Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-387-2022
https://doi.org/10.5194/ms-13-387-2022
Research article
 | 
27 Apr 2022
Research article |  | 27 Apr 2022

A passive upper-limb exoskeleton for industrial application based on pneumatic artificial muscles

Maria Paterna, Stefania Magnetti Gisolo, Carlo De Benedictis, Giovanni Gerardo Muscolo, and Carlo Ferraresi

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Altenburger, R., Scherly, D., and Stadler, K. S.: Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation, Robomech J., 3, 1–7, https://doi.org/10.1186/s40648-016-0051-5, 2016. 
Angold, R., Lubin, J., Solano, M., Paretich, C., and Mastaler, T.: Exoskeleton and method of providing an assistive torque to an arm of a wearer, CA2952403A1, 2017. 
Bai, S., Christensen, S., and Islam, M. R. U.: An upper-body exoskeleton with a novel shoulder mechanism for assistive applications, 2017 IEEE Int. Conf. Adv. Intell. Mech., 1041–1046, https://doi.org/10.1109/AIM.2017.8014156, 2017. 
Balasubramanian, S., Wei, H. R., Perez, M., Shepard, B., Koeneman, E., Koeneman, J., and He, J.: Rupert: An exoskeleton robot for assisting rehabilitation of arm functions, in: 2008 Virtual Rehabilitation, IWVR, https://doi.org/10.1109/ICVR.2008.4625154, 163–167, 2008. 
Cui, X., Chen, W., Jin, X., and Agrawal, S. K.: Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance, IEEE/ASME Trans. Mech., 22, 161–172, https://doi.org/10.1109/TMECH.2016.2618888, 2017. 
Download
Short summary
We present a novel exoskeleton based on deformable pneumatic actuators, known as McKibben muscles or artificial muscles. The aim of this system is to support a worker during overhead tasks, in which they need to lift the arms and hold that position for a long time. Simulations have been performed, starting from a mathematical model of the exoskeleton and of the artificial muscle. A first architecture of the complete device is also presented.