Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-687-2022
https://doi.org/10.5194/ms-13-687-2022
Research article
 | 
05 Aug 2022
Research article |  | 05 Aug 2022

Design and analysis of a hollow-ring permanent magnet brake for robot joints

Ruoyu Tan, Jieji Zheng, Bin Yu, Baoyu Li, Dapeng Fan, and Xin Xie

Related authors

Design optimization analysis of an anti-backlash geared servo system using a mechanical resonance simulation and experiment
Lianchao Zhang, Hongbo Liao, Dapeng Fan, Shixun Fan, and Jigui Zheng
Mech. Sci., 12, 305–319, https://doi.org/10.5194/ms-12-305-2021,https://doi.org/10.5194/ms-12-305-2021, 2021
Compact design of a novel precise cable drive mechanism with high precision and large torque-to-weight ratio
Xin Xie, Xianliang Jiang, Shixun Fan, and Dapeng Fan
Mech. Sci., 10, 47–56, https://doi.org/10.5194/ms-10-47-2019,https://doi.org/10.5194/ms-10-47-2019, 2019
Short summary
Design and development of a novel monolithic compliant XY stage with centimeter travel range and high payload capacity
Shixun Fan, Hua Liu, and Dapeng Fan
Mech. Sci., 9, 161–176, https://doi.org/10.5194/ms-9-161-2018,https://doi.org/10.5194/ms-9-161-2018, 2018
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32, https://doi.org/10.5194/ms-14-19-2023,https://doi.org/10.5194/ms-14-19-2023, 2023
Short summary
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13, https://doi.org/10.5194/ms-14-1-2023,https://doi.org/10.5194/ms-14-1-2023, 2023
Short summary
Dynamic modeling and vibration characteristics analysis of parallel antenna
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022,https://doi.org/10.5194/ms-13-1019-2022, 2022
Short summary
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990, https://doi.org/10.5194/ms-13-979-2022,https://doi.org/10.5194/ms-13-979-2022, 2022
Short summary
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978, https://doi.org/10.5194/ms-13-961-2022,https://doi.org/10.5194/ms-13-961-2022, 2022
Short summary

Cited articles

Cheng, Z., Jin, M. H., Liu, Y. C., Zhang, Z., L Yu, L., and Hong, L: Singularity Robust Path Planning for Real Time Base Attitude Adjustment of Free-floating Space Robot, International Journal of Automation and Computing, 14, 169–178, https://doi.org/10.1007/s11633-017-1055-1, 2017. 
Gibbs, E. G. and Office, W.: Canada and the international space Station program: overview and status, Acta Astronaut., 51, 591–600, 2002. 
Hirzinger, G., Albu-Schaffer, A., Hahnle, M., Schaefer, I., and Sporer, N.: On a new generation of torque controlled light-weight robots, IEEE Int. Conf. Robot., 4, 3356–3363, https://doi.org/10.1109/ROBOT.2001.933136, 2001. 
Jin, Y., Kou, B., Li, L., Li, C., Pan, D., and Song, K.: Analytical Model for a Permanent Magnet Eddy-Current Brake With Transverse Edge Effect, IEEE Access, 7, 61170–61179, https://doi.org/10.1109/ACCESS.2019.2915973, 2019. 
Kumar, B., Sivakumar, K., Rao, Y. S., and Karunanidhi, S.: Design of a New Electromagnetic Brake for Actuator Locking Mechanism in Aerospace Vehcile, IEEE T. Magn., 53, 1–6, https://doi.org/10.1109/TMAG.2017.2707242, 2017.  
Download
Short summary
A novel hollow-ring permanent magnet brake integrated in robot joints is proposed, which allows the brake to require much less axial space and provides more than 1.5 times braking torque for the same volume as the conventional electromagnetic-spring friction brake. A coupled dynamics model of the proposed brake is developed from machine-electric-magnetic aspects. The 3D model of the brake is simulated through finite-element software. The theoretical models are verified through experiments.