Articles | Volume 15, issue 1
https://doi.org/10.5194/ms-15-137-2024
https://doi.org/10.5194/ms-15-137-2024
Research article
 | 
05 Mar 2024
Research article |  | 05 Mar 2024

Design and obstacle-crossing analysis of a four-link rocker-suspension planetary exploration robot

Zhen Song, Zirong Luo, and Huixiang Xie

Related authors

Design and analysis of a six-wheeled companion robot with mechanical obstacle-overcoming adaptivity
Zhen Song, Zirong Luo, Guowu Wei, and Jianzhong Shang
Mech. Sci., 12, 1115–1136, https://doi.org/10.5194/ms-12-1115-2021,https://doi.org/10.5194/ms-12-1115-2021, 2021
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Aoki, T., Murayama, Y., and Hirose, S.: Development of a Transformable Three-wheeled Lunar Rover: Tri-Star IV, J. Field Robot., 31, 206–223, https://doi.org/10.1002/rob.21482, 2013. 
Arm, P., Zenkl, R., Barton, P., Beglinger, L., Dietsche, A., Ferrazzini, L., Hampp, E., Hinder, J., Huber, C., Schaufelberger, D., Schmitt, F., Sun, B., Stolze, B., Kolvenbach, H., and Hutter, M.: SpaceBok: A Dynamic Legged Robot for Space Exploration, in: 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24 May 2019, IEEE, 6288–6294, https://doi.org/10.1109/ICRA.2019.8794136, 2019. 
Bartsch, S.: Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration, Künstliche Intelligenz, 28, 127–131, https://doi.org/10.1007/s13218-014-0299-y, 2014. 
Bartsch, S., Birnschein, T., Cordes, F., Kühn, D., Kampmann, P., Hilljegerdes, J., Planthaber, S., Römmermann, M., and Kirchner, F.: SpaceClimber: Development of a Six-Legged Climbing Robot for Space Exploration, in: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany, 7–9 June 2010, VDE, 1265–1272, 2010. 
Bogue, R.: Robots for space exploration, Ind. Robot, 36, 323–328, https://doi.org/10.1108/01439911211227872, 2012. 
Download
Short summary
There are still many meteorite craters and boulders on the surface of Mars and the Moon that cannot be accessed by existing planetary exploration robots. To solve this issue, this paper proposes a four-link rocker-suspension planetary exploration robot that has both the reliability and low complexity of wheeled rovers and competent terrain adaptability and obstacle-crossing performance.