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Abstract. At present, there are still many meteorite craters and boulders on the surface of Mars and the Moon
that cannot be accessed by existing planetary exploration robots. To provide a solution to this issue, this paper
proposes a four-link rocker-suspension planetary exploration robot that combines both the reliability and low
complexity of wheeled rovers with competent terrain adaptability and obstacle-crossing performance. Relying
on its special differential pitch device, the robot can adapt to fluctuations in terrain by using both active and
passive modes. Moreover, the four-link rocker suspensions on both sides of the robot can increase the instan-
taneous rotation radius of the rockers when the robot climbs over obstacles. In this paper, using modelling and
simulations, we demonstrate that the four-link rocker suspension can improve the robot’s obstacle-crossing ca-
pability. The geometric and static conditions required for the robot to cross obstacles are derived and discussed,
and numerical simulations are conducted to identify the maximum obstacle-crossing heights that satisfy different
conditions. Finally, a physical prototype of the robot is developed.

1 Introduction

Due to the increasing interest in space exploration, a variety
of mobile robots have been sent to the surface of the Moon
and Mars for exploration missions (Zhang et al., 2021). How-
ever, there are still many meteorite craters and boulders on
the surface of these planetary bodies that existing robots can-
not easily explore. This has resulted in higher requirements
with respect to the terrain adaptability and obstacle-crossing
capability of planetary rovers (Zakrajsek et al., 2005). In ad-
dition, these exploration robots have to overcome the outer-
space environment, which is characterized by low gravity,
high vacuum, heavy radiation, extreme hot or cold, and weak
magnetic fields. Therefore, it is of great practical significance
to develop a planetary exploration robot with strong obstacle-
crossing capability and terrain adaptability while maintain-
ing the other advantages of existing planetary rovers.

Currently, six-wheeled rocker–bogie rovers represent the
most mature technology in this field and are the most widely
applied robot type. From the Sojourner in 1997 (Lindemann

and Voorhees, 2005; Bogue, 2012) and the Spirit and Oppor-
tunity in 2003 (Squyres and Crater, 2004) to Perseverance
(Sharafa et al., 2020), the lunar exploration robot (Zhai et
al., 2018) and Jade Rabbit 2 (Zhang et al., 2014) today, six-
wheeled rocker–bogie rovers show excellent terrain adapt-
ability and manoeuvrability on uneven planetary surfaces.
The rocker–bogie suspension can maintain all of the rover
wheels in contact with the ground (Bruzzone and Quaglia,
2012). Furthermore, the pure mechanical structure makes ad-
ditional control and actuate modules to adjust the rover’s con-
figuration unnecessary. Nevertheless, rocker–bogie suspen-
sions not only increase the mass of the robot but also limit the
robot’s obstacle-crossing ability. When rocker–bogie robots
climb steps and stairs, they often experience the undesired
phenomenon that some wheels float from the ground, which
may lead to mobile robot instability (Kim et al., 2012).

Some planetary exploration robots adopt an active and
controllable chassis structure, such as the Sample Return
Rover (SRR; Kozma et al., 2007, 2008), Tri-star (Aoki et
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al., 2013), Nomad (Cabrol et al., 2001a, b), Sherpa (Cordes
et al., 2011; Roehr et al., 2014) and Scarab (Wettergreen et
al., 2010). These robots can actively adjust their posture dur-
ing movement and, thus, maintain the stability of their main
bodies. The more flexible chassis structure and joints en-
hance their obstacle-crossing ability, but they also require the
robots to adopt additional actuators or special control strate-
gies, making their control system more complex (Siegwart et
al., 2002). Nevertheless, the mechanical structure of this kind
of robot is simpler.

However, the applicability of wheeled rovers in unstruc-
tured and steep terrain is limited. To overcome these limita-
tions, legged robots provide a very promising alternative for
space exploration, for instance, SpaceBok (Arm et al., 2019),
SpaceClimber (Bartsch et al., 2010; Bartsch, 2014), Scor-
pion (Dirk and Frank, 2014), the bio-inspired Lunar Lo-
cust (Herkenhoff et al., 2021), WORMS (Lordos et al., 2023)
and Spacebit (Excell, 2021). With respect to climbing rocks,
crossing trenches, jumping over steep bunkers and other
complex movements, legged robots have greater advantages,
making them more suitable for exploring unknown areas
with complex terrain and high scientific research value.

Hybrid wheeled-legged robots are another feasible scheme
that combine the high-speed and efficient performance of
wheeled robots with the adaptability of legged robots. Typ-
ical examples are ATHLETE (Wilcox, 2011; Sunspiral et
al., 2012) and Chariot (Harrison et al., 2008), proposed by
NASA, which are used to carry out transportation missions
on the Moon. However, on the other hand, legged systems are
mechanically complex because additional actuators and sen-
sors are required to steadily maintain their balance, inevitably
leading to slow movement (Kim et al., 2012). Furthermore,
planning the walking motion online can be computationally
expensive (Kolvenbach et al., 2017). The low-gravity envi-
ronment on a planet’s surface can also add more uncertainty
to the robot’s gait control, especially for robots with a dy-
namic gait. These reasons all lead to the limited application
of legged robots in planetary exploration tasks that require
high system stability and reliability. In fact, not all plane-
tary surfaces are suitable for legged systems. For example,
the surface of the Moon is covered with a 1–18 m thick layer
of rock debris, making it easy for the joints of the leg struc-
ture to get stuck (Zakrajsek et al., 2005; Shkuratov and Bon-
darenko, 2001). Moreover, the rock debris may stick to the
hinges on the leg.

Consequently, in this paper, we propose a four-link rocker-
suspension planetary exploration robot that has both the re-
liability and low complexity of wheeled rovers and bet-
ter terrain adaptability and obstacle-crossing performance.
Hitherto, four-link mechanisms have been applied to many
wheeled robots, such as Shrimp (Siegwart et al., 2002),
CEDRA (Meghdari et al., 2005) and CRAB II (Thueer et
al., 2006). Most of these robots adopt parallelogram four-
link mechanisms. The four-link mechanisms on both sides
of these robots not only improve the stability of their main

bodies but also enhance their terrain adaptability. However,
the four-link mechanisms on both sides do not significantly
improve the robots’ obstacle-crossing capability; therefore,
Shrimp and CEDRA have a wheel mounted on a four-link
mechanism located in front of the robot that will lift the front
wheel if an obstacle is encountered.

Compared with the existing wheeled rovers, there are two
superiorities of the proposed robot. Firstly, using a differen-
tial pitching device, it can passively or actively maintain the
balance of its main body during motion. In the passive adap-
tation mode, the influence of terrain fluctuations on the pitch
angle of the robot’s main body will be reduced. In the active
control mode, the robot can actively adjust the pitch angle of
its main body to a specific angle according to task require-
ments. Secondly, it has a four-link mechanism to connect
the primary and secondary rockers, which can increase the
instantaneous turning radius of the rockers when the robot
climbs over obstacles. This robot provides a feasible scheme
to improve the climbing capability and terrain adaptability of
wheeled planetary rovers without a complex control strategy
or additional mechanical devices and sensors, which has a
broad application prospect in future planetary exploration.

The rest of the paper is arranged as follows: Sect. 2 intro-
duces the mechanical structure of the proposed robot; Sect. 3
illustrates a model of the geometric and static conditions re-
quired for the robot to cross obstacles; in Sect. 4, numerical
simulation is conducted to analyse the obstacle-crossing ca-
pability of the robot; the development of the robot’s physical
prototype is presented in Sect. 5; and Sect. 6 provides a con-
clusion and an outlook with respect to future applications and
improvement of the robot.

2 Mechanical design

2.1 Mechanical structure

The physical prototype (Fig. 1a) and mechanical structure
of the proposed robot are shown in Fig. 1. The robot con-
sists of a main body and two four-link rocker suspensions on
both sides (Fig. 1b). The rocker suspensions on both sides are
connected by a differential pitching device (Fig. 1e), which
is contained in the main body (Fig. 1c). By combining ac-
tive and passive methods, this device enables the robot to
adapt to the undulating changes in terrain during movement
and also plays a role in adjusting the pitch angle of the main
body. The four-link rocker suspension consists of a primary
rocker, a secondary rocker, two connecting rods and three
walking wheels (Fig. 1f). The primary and secondary rock-
ers and the left and right connecting rods jointly form an
isosceles trapezoidal four-link mechanism. In this four-link
rocker suspension, the instantaneous rotation centreOt of the
primary and secondary rockers is positioned lower than the
centre of the walking wheels when the robot is moving on flat
ground (as shown in Fig. 1f), which is conducive to the robot
crossing obstacles. As the overturning torque (TN2 ) caused
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by the pressure (N2) on the front walking wheel will drive
the primary rocker to rotate relative to its instantaneous ro-
tation centre Ot when the front walking wheel collides with
an obstacle (as the instantaneous rotation centre of the pri-
mary and secondary rockers is lower than the centre of the
wheel), it will be beneficial for the primary rocker to rotate
clockwise, which will help the front walking wheels climb
up along the obstacle. The further mathematical demonstra-
tion of this will be elaborated upon in Sect. 2.4. To enhance
its manoeuvrability, the proposed robot adopts a six-wheel
independent-drive system. There is a direct-current (DC) mo-
tor inside each wheel to independently drive its rotation (as
shown in Fig. 1d and f). In addition, the four front and rear
walking wheels can turn independently via a steering device,
which is used to realize the robot’s steering. The structure of
the steering device is shown in Fig. 1d.

2.2 Steering device

In the four-link rocker suspension, the primary and secondary
rockers can only rotate in relatively the same plane, but they
cannot swing freely. Therefore, the robot’s steering relies on
the steering devices installed on the front and rear walking
wheels. As shown in Fig. 2, the steering device constitutes a
stepping motor, a harmonic reducer, a potentiometer, and a
worm and worm gear mechanism. In the device, the stepping
motor drives the worm and worm gear mechanism to realize
the steering of the walking wheel, while the wheel is directly
driven by a DC servo motor. The potentiometer on the top of
the device measures the rotation angle of the walking wheel
in real time, which constitutes a closed control loop and en-
sures that the wheel can rotate to a specific angle. The har-
monic reducer is used to reduce the output speed of the step-
ping motor and increases the steering torque of the wheel.

2.3 Differential pitching device

Through the differential pitching device, the robot can reduce
or control the pitch angle of the main body during movement.
Figure 3 shows the composition (Fig. 3a, b) and a simplified
mechanism diagram (Fig. 3c) of the device. The differential
pitching device is composed of a differential bevel gear group
and an active pitch control device. The differential bevel gear
group has three bevel gears (1′, 2′ and 3′), which are assem-
bled on the left rocker connecting shaft, the main body shaft
and the worm gear shaft respectively. The worm gear shaft is
coaxial with the right rocker connecting shaft, but they can
rotate relative to each other and generate an angle difference
through the active pitch control device. The bearing support
of the main body shaft is directly installed on the device base,
which is fixed on the main body, so the axis direction of the
main body shaft is always the same as that of the main body.

The active pitch control device is formed by a group of
fixed straight gears (Gear 1 and Gear 2), a worm (w) and
worm gear (wg) mechanism, and a DC motor (m) fixed on

the bracket. The right rocker connecting shaft is fixed on the
motor bracket by a lantern ring, so the active pitch control de-
vice will always rotate synchronously with the right primary
rocker. In the active pitch control device, the DC motor drives
the worm and worm gear mechanism through a fixed gear
group, which is used to increase the worm’s speed. When
the robot wants to actively adjust its main body’s pitch an-
gle, the DC motor will drive bevel gear 3′ to rotate relative
to the right rocker connecting shaft through the worm and
worm gear mechanism. (The absolute pitch angles of the left
and right rocker connection shafts relative to the ground will
not change due to the output torque of the DC motor.) Then,
bevel gear 3′ will drive bevel gear 2′ to rotate relative to bevel
gear 1′ through the differential bevel gear group. The main
body shaft will also rotate around the left rocker connection
shaft with bevel gear 2′. Because the main body shaft is fixed
to the device base through the bearing support and the axis
direction of the main body shaft is always the same as that
of the main body, the robot’s main body will also change its
pitch angle accordingly. When the DC motor is turned off,
bevel gear 3′ will rotate synchronously with the right pri-
mary rocker. Moreover, the pitch angle of the robot’s main
body relative to the ground mainly depends on the pitch an-
gles of the left and right rocker connecting shafts relative to
the ground. A detailed mathematical demonstration is given
in the following.

In Fig. 3c, the coordinate frame O1 {X1,Y1,Z1} is that of
the robot’s main body, in which the X1 axis always points
straight ahead of the main body and the X1–O1–Z1 plane
always coincides with the device base.

From Fig. 3c, the mathematical relationship between the
pitch angles of the left and right primary rockers relative
to the device base (the coordinate frame O1 {X1,Y1,Z1})
can be calculated and derived. In the differential bevel gear
group, the teeth numbers of the three bevel gears are the
same, i.e. z1′ = z2′ = z3′ . Therefore, the relations between
the bevel gears’ rotation angles relative to the device base
(the robot’s main body coordinate frame O1 {X1,Y1,Z1})
can be obtained as follows:


δl = δ1′

δ1′ =−δ3′

δ3′ = δwg.

(1)

In Eq. (1), δl , δ1′ , δ3′ and δwg represent the rotation an-
gles of the left rocker connecting shaft, bevel gear 1′, bevel
gear 3′ and the worm gear relative to the coordinate frame
O1 {X1,Y1,Z1} respectively. Their positive directions are
marked using numerical values in Fig. 3c.

In the active pitch control device, the output speed of the
DC motor is increased through the straight gears 1 and 2.
Hence, the relation between the DC motor’s output rotation
angle and the worm’s rotation angle relative to the device
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Figure 1. Mechanical structure of the robot: (a) physical prototype; (b) mechanical structure; (c) main body; (d) steering device; (e) differ-
ential pitching device; (f) four-link rocker suspension.

Figure 2. Constitution of the steering device.

base can be derived as follows:

−δm
z1

z2
= δw. (2)

In Eq. (2), δm (the direction of δm is marked in Fig. 3c) and δw
are the rotation angles of the DC motor and the worm relative
to the device base (the coordinate frame O1 {X1,Y1,Z1}) re-
spectively; z1 and z2 are the teeth numbers of the straight
gears 1 and 2. In addition, because the right rocker con-
necting shaft is fixed on the motor bracket and rotates syn-
chronously with the whole active pitch control device, the
relation between the rotation angle of the right rocker con-
necting shaft (δr) relative to the device base and that of the
worm gear can be derived as follows:

δr = δwg+ δw
zw

zwg
. (3)

In Eq. (3), zw represent the number of worm’s heads and
zwg represent the number of worm’s gear teeth. By combing
Eqs. (1), (2) and (3), the relationship between the rotation an-
gles of the left and right rocker connecting shafts relative to
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Figure 3. Differential pitching device: (a) the composition of the differential pitching device; (b) the composition of the differential pitching
device from another perspective; (c) a simplified mechanism diagram of the differential pitching device.

the device base can be obtained as follows:

δl+ δr =−δm
z1

z2

zw

zwg
. (4)

It is assumed that α represents the pitch angle of the main
body relative to the ground and that αl1 and αr1 represent
those of the respective left and right primary rockers. Be-

cause the device base is fixed inside the main body, the pitch
angle of it is equal to α and there are

{
αl1 = α+ δl

αr1 = α+ δr.
(5)
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By substituting Eq. (4) into Eq. (5), the pitch angle α of
the main body relative to the ground can be expressed as fol-
lows:

α =
αl1 +αr1 + δm

z1
z2

zw
zwg

2
. (6)

From Eq. (6), it can be seen that the pitch angle of the left and
right primary rockers and the output rotation angle of the DC
motor jointly determine the pitch angle of the main body dur-
ing robot motion. Moreover, through the differential pitch-
ing device, these respective influences have been halved. The
pitch angle control of the robot’s main body can be divided
into two modes: the passive adaptation mode and the active
control mode.

With respect to the passive adaptation mode, this mode can
reduce the impact of terrain fluctuations on the pitch angle
of the robot’s main body. When the DC motor is turned off,
the worm–worm gear mechanism is in a self-locking status,
meaning that the right rocker connecting shaft and the worm
gear shaft can rotate synchronously, i.e. δm = 0. In this case,
the robot can passively adapt to fluctuations in the terrain dur-
ing motion. If the left primary rocker rotates a certain angle
relative to the main body, through the differential bevel gear
group, the right rocker will rotate the same angle relative to
the main body in the opposite direction and vice versa. Thus,
the pitch angle of the main body will always be half of the
sum of the pitch angles of the primary rockers on both sides.
The mathematical relationship between the pitch angles of
the primary rockers and the main body can be expressed as
follows:

α =
αl1 +αr1

2
. (7)

With respect to the active control mode, this mode enables
the robot to actively adjust the pitch angle of its main body
to a specific angle according to task requirements. When the
robot is moving on a slope but wants to keep its body hor-
izontal or when the robot wants to keep its body at a spe-
cific angle for observation or operation, the active control
mode will be activated by the operator via the remote control.
The control commands sent by the remote control will be ac-
cepted by the internal control centre of the robot and con-
verted into pulse-width modulation (PWM) signals to drive
the DC motor to output the rotation angle. The output rota-
tion angle of the DC motor is controlled via the proportional–
integral–derivative (PID) closed-loop control. According to
Eq. (6), the operator will control the DC motor to output a
certain rotation angle, and the worm shaft will then be driven
to rotate through the worm–worm gear mechanism. Next, in
the differential bevel gear group, the main body shaft will
rotate around the left rocker connecting shaft until the main
body reaches the pitch angle expected by operators.

2.4 Four-link rocker suspension

Figure 4 shows the composition and structure of the robot’s
rocker suspension. d1–d9 (marked in Fig. 4b) represent the
measurements of each respective part of the rocker suspen-
sion. As shown in Fig. 4a, the four-link rocker suspension is
composed of a primary rocker, a secondary rocker, two con-
necting rods and three walking wheels. The primary and sec-
ondary rockers and the left and right connecting rods jointly
form an isosceles trapezoidal four-link mechanism (A–B–
C–D), in which the length of the left connecting rod A–C
is equal to that of the right connecting rod B–D. To bet-
ter characterize the geometric configuration of the four-link
mechanism, the included angle between the upper connect-
ing rod (A–B) and the left connecting rod (A–C) is defined as
θ3, whereas the included angle between the upper connecting
rod (A–B) and the lower connecting rod (C–D) is defined as
θ2.

When the robot is climbing over an obstacle, the primary
and secondary rocker will rotate accordingly. Different from
the traditional rocker–bogie suspension, the proposed four-
link rocker suspension can increase the instantaneous rota-
tion radius of the primary and secondary rocker through the
four-link mechanism, which makes the rotation torques ap-
plied from the obstacle’s support forces to the rockers con-
ducive to their rotation. This improves the obstacle-crossing
capability of the robot.

As shown in Fig. 4b, the O0 {X0,Y0} coordinate frame is
a ground-fixed coordinate frame, whereas O1 {X1,Y1} is the
robot’s main body coordinate frame located at the intersec-
tion of the centreline of the robot’s main body and the rota-
tion axes of the primary rockers on both sides. Let the coor-
dinate of the origin O1 expressed in the ground-fixed coor-
dinate frame O0 {X0,Y0} be (a, b). The transformation ma-
trix of the robot’s body coordinate frame O1 {X1,Y1} rela-
tive to the ground-fixed coordinate frame O0 {X0,Y0} can be
obtained in the homogeneous transformation matrix form as
follows:

0T1 =

cosα −sinα a

sinα cosα b

0 0 1

 . (8)

Draw the extension lines of the connecting rods A–C and
B–D and make them intersect at point Ot . Point Ot is the
instantaneous rotation centre of the primary and secondary
rockers. In the coordinate frame O1 {X1,Y1}, the coordinate
vector of point Ot can be expressed as follows:

1pOt =

x
1
Ot

y1
Ot

1

=
−d4− rt1 cosθ3

−rt1 sinθ3

1

 (9)

In Eq. (9) and Fig. 4b, rt1 represents the rotation radius of
point A on the primary rocker about the instantaneous centre
Ot , whereas rt2 represents that of point C on the secondary
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Figure 4. Composition and structure of the rocker suspension: (a) the composition of the four-link rocker suspension; (b) the simplified
structure of the rocker suspension.

rocker. The respective values of rt1 and rt2 can be expressed
as follows:

rt1 =

(
d2+

d1 sinθ2
sinθ3

)
d3

d3− d1 cosθ2+
d1 sinθ2

tanθ3

, (10)

rt2 =

(
d2+

d1 sinθ2
sinθ3

)
d3

d3− d1 cosθ2+
d1 sinθ2

tanθ3

− d2. (11)

For example, when the front walking wheel makes contact
with an obstacle, the coordinate vector of the centre of the
front walking wheel (E) in O1 {X1,Y1} can be expressed as
follows:

1pE =

x1
E

y1
E

1

=
 d5
−d6

1

 . (12)

We assume that the left and right rocker suspensions of the
robot cross the obstacle simultaneously and that the robot
does not actively adjust the pitch angle of the main body, i.e.
the pitch angles of the left and right primary rockers are equal
to that of the main body, α = αl1 = αr1 . Because the direction
of the support force (N2 in Fig. 4b) from the obstacle on the
front walking wheel is perpendicular to the vertical surface
of the obstacle, the rotation torque TN2 that N2 applies to the

primary rocker can be expressed as follows:

TN2 =N2×
(

0T1

(
1pE−

1pOt

))
=−N2

((
d5+ d4+ rt1 cosθ3

)
sinα

+
(
−d6+ rt1 sinθ3

)
cosα

)
. (13)

In Eq. (13), N2 represents the vector of N2, 0T1 is
the transformation matrix of the robot’s body coordinate
frame O1 {X1,Y1} relative to the fixed coordinate frame
O0 {X0,Y0}, and 1pOt and 1pE are the coordinate vectors
of the pointOt and the centre of the front walking wheel (E)
inO1 {X1,Y1}. When the front walking wheel is climbing the
obstacle, the primary rocker will rotate clockwise around the
instantaneous centre Ot . Therefore, according to the right-
hand principle, if TN2 is less than zero, it can be considered
that the rotation torque applied by N2 is conducive to the
rotation of the rocker. The same analysis method is also ap-
plicable to the robot’s other wheels crossing obstacles.

From Eq. (13), it can be seen that the value of TN2 is re-
lated to the structural parameters of the robot. Therefore, we
can optimize the structural parameters of the robot to make
the torques that it receives more conducive to crossing obsta-
cles. Hence, compared with traditional rocker–bogie suspen-
sions, the four-link rocker suspension improves the obstacle-
crossing capability of the proposed robot and make it climb
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over obstacles more easily. Further detailed analysis will be
conducted in Sects. 3 and 4.

3 Modelling of the robot’s obstacle-crossing
capability

To analyse the optimal obstacle-crossing performance of the
robot, it is assumed that the rocker suspensions of the robot
cross a regular vertical obstacle simultaneously and that the
robot does not actively adjust the pitch angle of the main
body, meaning that the pitch angles of the left and right
primary rockers are equal on both sides, i.e. α = αl1 = αr1 .
Furthermore, the angles θ3 and θ2 of the left rocker suspen-
sion are equal to those of the right rocker suspension. The
obstacle-crossing process of the robot can be divided into six
stages, as shown in Fig. 5.

Firstly, the robot moves forward until the front walking
wheels encounter the obstacle (Fig. 5a). Then, as the front
walking wheels climb up the obstacle, the primary rockers
are raised along the vertical surface of the obstacle (Fig. 5b).
After the front walking wheels climb onto the obstacle, the
robot keeps moving forward until the middle walking wheels
contact the obstacle (Fig. 5c). Subsequently, as the middle
walking wheels climb along the obstacle’s vertical surface,
the secondary rockers rotate accordingly (Fig. 5d). After the
middle walking wheels climb onto the obstacle, the robot
continues to move forward until the rear walking wheels con-
tact the obstacle (Fig. 5e). Finally, under the traction of the
front and middle walking wheels, the rear walking wheels of
the robot climb over the obstacle (Fig. 5f).

For the robot to successfully climb an obstacle, its geo-
metric posture must satisfy certain geometric and static con-
ditions. In this section, the mathematical models of the geo-
metric and static conditions will be established.

3.1 Geometric condition

The geometric obstacle-crossing height of the robot depends
on the relative rotation angle between the primary and sec-
ondary rockers. In the rocker suspension, the relative motion
range of the primary rocker and the secondary rocker is lim-
ited by the four-link mechanism connecting them, as shown
in Fig. 6. During the obstacle-crossing process, θ3 contin-
uously changes with the relative rotation between the pri-
mary and secondary rockers. When the lower connecting rod
(C–D) and the right connecting rod (B–D) are collinear, the
four-link mechanism is in the dead-centre position. In this
position, there is interference between the right connecting
rod (B–D) and the secondary rocker, and θ3 reaches its max-
imum value θ3max (Fig. 6a). When the left connecting rod
(A–C) and the lower connecting rod (C–D) are collinear, the
four-link mechanism is also in the dead-centre position. In
this position, there is interference between the left connect-
ing rod (A–C) and the secondary rocker, and the included
angle θ3 is at its minimum value θ3min (Fig. 6b).

From Fig. 6, the value of θ3max and θ3min can be expressed
as follows:

θ3max = arccos
(d2)2
+ (d3)2

− (d1+ d2)2

2d2d3
, (14)

θ3min = arccos
(d3)2
− (d2)2

+ (d1+ d2)2

2(d1+ d2)d3
. (15)

Furthermore, the geometric relationship between θ2 and θ3
can be expressed as follows:

(d2 sinθ3+ d1 sinθ2)2
+ (d3− d1 cosθ2− d2 cosθ3)2

= (d2)2.

(16)

During the obstacle-crossing process, the robot must always
ensure that the included angle θ3 is less than θ3max and
greater than θ3min. If this is not the case, it will be unable to
continue to move forward due to interference within the four-
link mechanism (A–B–C–D). Therefore, the geometric con-
ditions that the robot needs to satisfy at any obstacle-crossing
stages can be summarized as the following inequality:

θ3min < θ3 < θ3max. (17)

In this section, an analysis of the robot’s geometric posture
at different obstacle-crossing stages is conducted to obtain an
expression of the robot’s obstacle-crossing height when the
geometric conditions are satisfied.

At obstacle-crossing stage (b), as the front walking wheels
of the robot climb up the obstacle, the included angle θ3 be-
tween the upper connecting rod (A–B) and the left connect-
ing rod (A–C) will also continuously increase. Only when
θ3 is always less than θ3max can the robot successfully enter
obstacle-crossing stage (c). After the front walking wheels
climb onto the obstacle, θ3 reaches its maximum value (as
shown in Fig. 7).

As shown in Fig. 7, the relationship between the obstacle
height h and θ3 can be obtained as follows:

h= d8+ d2 sin(α+ θ3)+ (d4+ d5) sinα− d6 cosα. (18)

Because the middle and rear walking wheels are both on the
horizontal ground, θ2 =−α. Thus, Eq. (18) can be converted
to

h= d8+ d2 sin(θ3− θ2)− (d4+ d5) sinθ2− d6 cosθ2. (19)

By drawing the curve of h as a function of θ3 through
Eqs. (16) and (19), the geometric maximum obstacle height
that the robot can climb up at stage (b) can be obtained.

At obstacle-crossing stage (d), the front walking wheels
have climbed onto the upper surface of the obstacle. Under
the traction of the front walking wheels, the middle walk-
ing wheels will climb upwards along the vertical surface of
the obstacle. When the middle walking wheels are climb-
ing along the vertical surface of the obstacle, the included
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Figure 5. Obstacle-crossing process of the robot.

Figure 6. Dead-centre positions of the four-link mechanism.

Figure 7. Geometric posture of the robot at stage (c) in Fig. 5.

angle θ3 will continue to decrease. The included angle θ3
must always remain greater than θ3min for the middle walk-
ing wheels to climb up the obstacle. After the middle walking
wheels climb onto the obstacle, θ3 reaches its minimum value
(as shown in Fig. 8).

Figure 8. Geometric posture of the robot at stage (e) in Fig. 5.

From Fig. 8, the mathematical relationship between α and
θ2/ θ3 can be obtained as follows:

d7 sin(α+ θ2)= (d4+ d5) sinα+ d2 sin(θ3+α)

+ d8 cos(α+ θ2)− d6 cosα. (20)

The obstacle height h can be expressed as follows:

h= (d1+ d7+ d9) sin(α+ θ2) . (21)

By drawing the curve of h as a function of θ3 through
Eqs. (16), (20) and (21), the geometric maximum obstacle
height that the robot can climb up at stage (d) can be ob-
tained.

At stage (f), as the rear walking wheels climb up the ob-
stacle, the included angle θ3 gradually decreases, and there
is no longer a risk of interference in the four-link mechanism
(A–B–C–D). Hence, analysis of the robot is no longer carried
out at this stage.
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Figure 9. Static-force situation of the robot at stage (b) in Fig. 5.

3.2 Static condition

In addition to the geometric conditions, the robot also needs
to satisfy certain static conditions to cross the obstacle. From
Fig. 5, it can be seen that the robot’s three pairs of walk-
ing wheels will successively climb along the obstacle verti-
cal surface during the obstacle-crossing process. Therefore,
we conduct static analyses of the robot at these respective
obstacle-crossing stages to obtain the static conditions that
the robot needs to satisfy.

Figure 9 shows the static-force situation of the robot at
obstacle-crossing stage (b). At this stage, the front walk-
ing wheels are climbing up the obstacle and the primary
rocker will be raised along the vertical surface of the obsta-
cle. Meanwhile, the middle and rear walking wheels continue
to move forward to maintain the contact between the front
walking wheels and the obstacle.

Because the mass of the primary and secondary rockers
is far less than that of the robot’s main body, their mass is
ignored to simplify the analysis and calculation.

In Fig. 9, N2 represents the horizontal normal force ex-
erted by the obstacle on the front walking wheels, f2 is the
vertical frictional force between the obstacle and the front
walking wheels, N3 and N5 represent the respective vertical
support forces of the ground to the middle and rear walk-
ing wheels, f3 and f5 are the respective horizontal frictional
forces between the ground and the middle and rear walking
wheels,m1 represents the mass of the robot’s main body, and
mw and rw are the respective mass and radius of the walking
wheel.

From Fig. 10, the static equilibrium equations of the robot
in the horizontal and vertical directions can be derived as fol-
lows:{

f3+ f5 =N2

f2+N3+N5 =m1g+ 6mwg.
(22)

The balance equation of the torques applied to the primary
rocker about point Ot can be obtained as follows:

f2E1−m1gE2 =N2E3+ 2mwgE4. (23)

In Eq. (23), there are
E1 = rw+ d6 sinα+ (d4+ d5)cosα+ rt1 cos(θ3+α)

E2 = rt1 cos(θ3+α)+ d4 cosα

E3 = d6 cosα− (d4+ d5) sinα− rt1 sin(θ3+α)

E4 = d6 sinα+ (d4+ d5)cosα+ rt1 cos(θ3+α) .

(24)

It is assumed that the sliding friction coefficient between
the wheels and the ground and the obstacle surface is µ.
At stage (b), if the front walking wheels can lift the pri-
mary rockers under the traction of sliding friction, the pri-
mary rockers can also be lifted when the pressure on the front
walking wheels is large enough and the front walking wheels
are subjected to static friction or rolling friction. Thus, we
assume that the output torques of the front motors are large
enough and that the front walking wheels rotate relative to the
vertical surface of the obstacle. The middle and rear walking
wheels are pure rolling on the ground without slipping. The
frictional force on the front walking wheels is f2 = µN2. In-
corporating f2 = µN2 into Eq. (23), the expression ofN2 can
be obtained as follows:

N2 =
m1gE2+ 2mwgE4

µE1−E3
. (25)

Because the included angle θ3 increases as the front walk-
ing wheels gradually climb upward, Eq. (25) represents the
minimum pressure that the front walking wheels need to ap-
ply to the vertical surface of the obstacle as the pitch an-
gle θ3 increases. To provide enough pressure, it is necessary
to keep the middle and rear walking wheels from slipping,
i.e. N2 < µ (N3+N5). Therefore, substituting Eq. (22) into
N2 < µ (N3+N5), the static condition required for the robot
to cross the obstacle at stage (b) can be expressed as the fol-
lowing inequality:

N2 <
µ (m1g+ 6mwg)

1+µ2 . (26)

At stage (b), the robot can only lift the primary rocker with-
out slipping the middle and rear wheels when it always satis-
fies inequality (26). Through Eq. (25), by drawing the curve
of N2 as a function of θ3 and making a comparison with
µ (m1g+ 6mwg)/

(
1+µ2), the feasible region of the robot’s

geometric posture for which the robot can pass obstacle-
crossing stage (b) will be obtained.

Figure 10 shows the static-force situation for the robot at
obstacle-crossing stage (d). At this stage, the front walking
wheels have climbed onto the upper surface of the obstacle,
the middle walking wheels are climbing up the obstacle’s
vertical surface, and the secondary rockers are also raised.
Meanwhile, the front and rear walking wheels continue mov-
ing forward to provide pressure between the middle walking
wheels and the obstacle.

In Fig. 10, N1 represents the vertical support force of the
obstacle to the front walking wheels, f1 is the horizontal
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Figure 10. Static-force situation of the robot at stage (d) in Fig. 5.

frictional force between the obstacle and the middle walk-
ing wheels,N4 represents the horizontal normal force exerted
by the obstacle on the middle walking wheels, and f4 is the
vertical frictional force between the obstacle and the middle
walking wheels. From Fig. 10, the static-force equilibrium
equations of the robot in the horizontal and vertical direc-
tions and the torque equilibrium equations of the primary and
secondary rockers about pointOt can be obtained as follows:

f1+ f5 =N4, (27)

N1+N5+ f4 = 6mwg+m1g, (28)

m1gE1− f1E5 = (N1− 2mwg)E4, (29)

f4E6+ f5E7−N4E8 = (N5− 2mwg)E9+ 2mwgE10.

(30)

In Eqs. (29) and (30), there are


E5 = rw+ d6 cosα− (d4+ d5) sinα− rt1 sin(θ3+α)

E6 = rw+ d8 sin(θ2+α)+ d7 cos(θ2+α)+ rt2 cos(θ3+α)

E7 = rw+ d8 cos(θ2+α)+ (d1+ d9) sin(θ2+α)− rt2 sin(θ3+α)

E8 = d8 cos(θ2+α)− d7 sin(θ2+α)− rt2 sin(θ3+α)

E9 = (d1+ d9)cos(θ2+α)− d8 sin(θ2+α)− rt2 cos(θ3+α)

E10 = d8 sin(θ2+α)+ d7 cos(θ2+α)+ rt2 cos(θ3+α) .

(31)

The height h of the obstacle that the front walking wheels
have climbed onto can be expressed as follows:

h= (d4+ d5) sinα+ d2 sin(α+ θ3)

+ (d1+ d9) sin(α+ θ2)+ d8 cos(θ2+α)− d6 cosα. (32)

Similarly, at stage (d), if the middle walking wheels can lift
the secondary rockers under the traction of sliding friction,
the secondary rockers can also be lifted when the pressure on
the middle walking wheels is large enough and the middle
walking wheels are subjected to static friction or rolling fric-
tion. We assume that the output torques of the middle motors
are large enough and that the middle walking wheels rotate
relative to the vertical surface of the obstacle. Therefore, the
frictional force on the middle walking wheels is f4 = µN4.

We also assume that the output torques of the front and rear
motors are the same and that both the front and rear walk-
ing wheels are pure rolling. Hence, the frictional forces ap-
plied to the front and rear walking wheels are equal – that is,
f1 = f5. Substituting f4 = µN4, f1 = f5, Eq. (27), Eq. (29)
and Eq. (30) into Eq. (28), the expression of N4 can be ob-
tained:

N4 =

2mwgE11
E9

+
m1gE12
E4

µE6
E9
+

E7
2E9
−
E8
E9
−

E5
2E4
+µ

. (33)

In Eq. (33), there are

{
E11 = (d1+ d7+ d9)cos(θ2+α)

E12 = d6 sinα+ d5 cosα.
(34)

As the middle walking wheels gradually climb upward, the
included angle θ3 decreases. Equation (33) represents the
minimum pressure that the middle walking wheels need to
apply to the vertical surface of the obstacle to provide suf-
ficient friction for the middle walking wheels to climb the
obstacle. For the same reason, at stage (b), it is also neces-
sary to keep the front and rear walking wheels from slipping
at stage (d), i.e. N4 < µ (N1+N5). Therefore, the static con-
dition required for the robot to cross the obstacle at stage (d)
can be expressed as the following inequality:

N4 <
µ (m1g+ 6mwg)

1+µ2 . (35)

Through Eq. (33), by drawing the curve of N4 as
a function of θ3 and making a comparison with
µ (m1g+ 6mwg)/

(
1+µ2), the feasible region of the

robot’s geometric posture for which the robot can pass
obstacle-crossing stage (d) will be obtained.

Figure 11 shows the static-force situation of the robot at
obstacle-crossing stage (f). At this stage, the front and mid-
dle walking wheels have climbed onto the upper surface of
the obstacle, under the traction of the front and middle walk-
ing wheels, and the rear walking wheels are climbing up the
obstacle vertical surface.

In Fig. 11, N6 represents the horizontal normal force ex-
erted by the obstacle on the rear walking wheels, f6 repre-
sents the vertical frictional force between the obstacle and
the rear walking wheels, N3 represents the vertical support
force of the obstacle to the middle walking wheels, f3 repre-
sents the horizontal frictional force between the obstacle and
the middle walking wheels at this stage, and hs3 represents
the vertical distance between the middle and rear walking
wheels. From Fig. 11, the static-force equilibrium equations
of the robot in the horizontal and vertical directions and the
torque equilibrium equations of the primary and secondary
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Figure 11. Static-force situation of the robot at stage (f) in Fig. 5.

rockers about point Ot can be obtained as follows:

f1+ f3 =N6, (36)

N1+N3+ f6 =m1g+ 6mwg, (37)

m1gE2− f1E5 = (N1− 2mwg)E4, (38)

(N3− 2mwg)E10+ f3E13+ 2mwgE9 =N6E14+ f6E15. (39)

In Eq. (39), there are
E13 = rw + d8 cos(θ2 +α)− d7 sin(θ2 +α)− rt2 sin(θ3 +α)

E14 = d8 cos(θ2 +α)+ (d1 + d9) sin(θ2 +α)− rt2 sin(θ3 +α)

E15 = (d1 + d9)cos(θ2 +α)− d8 sin(θ2 +α)− rt2 cos(θ3 +α)− rw.

(40)

The vertical distance hs3 between the middle and rear walk-
ing wheels can be expressed as follows:

hs3 = (d1+ d7+ d9) sin(α+ θ2) . (41)

At stage (f), we also assume that the rear walking wheels
are subjected to sliding friction and that the output torques
of the front and middle motors are the same. The front and
middle walking wheels are pure rolling on the surface of the
obstacle without slipping. Therefore, the frictional force on
the rear walking wheels is f6 = µN6 and the frictional forces
applied to the front and rear walking wheels are equal, i.e.
f1 = f3. Substituting f6 = µN6, f1 = f3, Eq. (36), Eq. (38)
and Eq. (39) into Eq. (37), the expression of N6 can be ob-
tained:

N6 =

m1gE12
E4
+

2mwgE11
E10(

µ+ E14
E10
−

E13
2E10
+
µE15
E10
−

E5
2E4

) . (42)

Equation (42) represents the minimum pressure that the rear
walking wheels need to apply to the vertical surface of the
obstacle. At stage (f), the front and middle walking wheels
must maintain pure rolling to provide sufficient pressure for
the rear walking wheels to climb the obstacle, i.e. N6 <

µ (N1+N3). Hence, the static condition for obstacle cross-
ing for the proposed robot at stage (f) can be expressed as the
following inequality:

N6 <
µ (m1g+ 6mwg)

1+µ2 . (43)

Through Eq. (42), by drawing the curve of N6 as
a function of θ3 and making a comparison with
µ (m1g+ 6mwg)/

(
1+µ2), the feasible region of the

robot’s geometric posture for which the robot can pass
obstacle-crossing stage (f) will be obtained.

4 Numerical simulations

In Sect. 3, the geometric and static conditions that the pro-
posed robot needs to satisfy to cross a vertical obstacle have
been obtained via mathematical analysis. In terms of the
geometric conditions, the included angle θ3 of the robot’s
four-link mechanism must always satisfy inequality (17),
i.e. θ3min < θ3 < θ3max. In terms of the static conditions,
the robot has to satisfy inequalities (26), (35), and (43) at
obstacle-crossing stages (b), (d) and (f) respectively. In addi-
tion to the dimensions of each part of the robot, especially
that of the four-link mechanism (A–B–C–D), whether the
robot can satisfy the obstacle-crossing conditions also de-
pends on the friction between the wheels and the ground as
well as the height of obstacles.

In this section, numerical simulations will be conducted to
discuss whether the robot can climb obstacles, and the robot’s
maximum obstacle-crossing height that satisfies the geomet-
ric and static conditions will be obtained. The geometric and
mass parameters of the robot are assigned as follows: d1 =

110 mm, d2 = 128 mm, d3 = 200 mm, d4 = 100 mm, d5 =

200 mm, d6 = 230 mm, d7 = 60 mm, d8 = 110 mm, d9 =

110 mm, rw = 50 mm, m1 = 8 kg and mw = 1 kg. It is as-
sumed that the robot performs exploration missions on the
Moon. Thus, the gravitational acceleration g is taken as
1.63 N kg−1.

4.1 Geometric obstacle-crossing capability simulations

It can be seen from inequality (17) that the value range
of θ3 geometrically restricts the robot’s obstacle-crossing
height. By incorporating the robot’s geometric parameters in
Eqs. (14) and (15), the value range of θ3 can be obtained as
follows:{
θ3max = 90.3299°

θ3min = 32.5555°.
(44)

Moreover, by solving the implicit function of Eq. (16) us-
ing MATLAB®, the relation curve between θ2 and θ3 can be
obtained (as shown in Fig. 12).

It can be seen from Fig. 12 that θ2 decreases contin-
uously as θ3 increases when θ3 is within the range of
θ3min(32.5555°)< θ3 < θ3max(90.3299°).

By substituting the values of θ2 and θ3 into Eqs. (19), (20)
and (21) and drawing the curves of the obstacle height h that
the robot can climb as a function of θ3 at stages (c) and (e),
we can get the relationship between the robot’s geometric
posture and its obstacle-crossing height (as shown in Fig. 13).
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Figure 12. Curve of θ2 as a function of θ3.

Figure 13. Curves of the robot’s obstacle-crossing height h as a
function of θ3: (a) the obstacle height h that the robot can climb at
stage (c) in Fig. 5; (b) the obstacle height h that the robot can climb
at stage (e) in Fig. 5.

From Fig. 13, it can be seen that the height h of the obsta-
cle that the robot can climb at stage (c) gradually increases
with an increase in θ3. Moreover, when θ3 is equal to θ3max
(90.3299°), the maximum obstacle-crossing height satisfy-
ing the geometric conditions is 185.2 mm. At stage (e), as θ3
decreases, the obstacle height that the robot can climb onto
gradually increases. When θ3 is equal to θ3min (32.5555°),
the robot’s maximum obstacle-crossing height satisfying the
geometric conditions is 218.2 mm.

4.2 Static obstacle-crossing capability simulations

The static conditions that the robot needs to satisfy are dif-
ferent at different obstacle-crossing stages. Thus, we carried
out a simulation for each stage in turn. By substituting the
geometric and mass parameters into Eqs. (25), (33) and (42)
and making the corresponding curves, the feasible region of
θ3 that the robot can climb over the obstacle with at different
stages can be obtained.

At stage (b), according to Eq. (25) and inequality (26), be-
sides the geometric parameters, whether the robot can cross
the obstacle also depends on the friction coefficient µ. Be-
cause the middle and rear walking wheels are both on the
horizontal ground, α =−θ2 in Eq. (25). Hence, by substi-

tuting the robot’s parameters and α =−θ2 into Eq. (25), the
curves of N2 as a function of θ3 under different friction coef-
ficients µ can be drawn (as shown in Fig. 14).

It can be seen from Fig. 14 that the pressure that the
front walking wheels’ of the robot needs to apply to the
obstacle decreases gradually as the angle θ3 increases (i.e.
as the front walking wheels climb upward along the obsta-
cle). From Fig. 12, we can know that θ3 is equal to 69.44°
when the robot is on the ground (i.e. θ2 = α = 0). Thus, as
long as N2 is always less than µ (m1g+ 6mwg)/(1+µ2)
when θ3 is greater than 69.44°, it can be considered that
the robot can smoothly pass through stage (b). However, in
Fig. 14, when the friction coefficient µ is equal to 0.65, the
front walking wheels cannot climb along the vertical surface
of the obstacle. Because the pressure N2 is larger than µ
(m1g+6mwg)/(1+µ2) when θ3 is less than 72.59°, the mid-
dle and rear walking wheels slip and cannot provide enough
propulsive force. When the friction coefficient µ is equal
to 0.75 and 0.85, the robot can pass stage (b) successfully.
Therefore, it can be concluded that a larger the friction co-
efficient µ is more advantageous with respect to the robot
passing obstacle-crossing stage (b).

Compared with the soil on the Earth, lunar soil is drier
(Sun et al., 2008). Moreover, there are more irregular struc-
tures, such as corners and saw teeth, on the surface of lunar
soil particles (Zheng et al., 2004). Therefore, we assume that
the friction coefficient µ between the robot’s wheels and the
lunar surface is 0.75 (Li et al., 2009), and this setting will
continue to be used in the following.

Stage (d) is the key step for the robot to cross the obstacle.
The height of the obstacle determines whether the robot can
successfully pass stage (d). After the front walking wheels
climb onto the obstacle upper surface, the pitch angle α of
the robot’s main body increases, which shortens the instan-
taneous rotation radius of the secondary rockers and is not
conducive to the middle walking wheels climbing onto the
obstacle.

Hence, we analyse the force situation with respect to the
robot when its middle walking wheels just leave the ground,
in order to explore whether the middle walking wheels can
leave the ground and climb upwards. At this time, the main
body’s pitch angle α is equal to−θ2. By substituting α =−θ2
and µ= 0.75 into Eq. (33), we can draw the curve of N4
as a function of θ3 (as shown in Fig. 15a); concurrently, by
incorporating α =−θ2 into Eq. (32), we can obtain the curve
of the front walking wheels’ obstacle-crossing height as a
function of θ3 when α =−θ2 (as shown in Fig. 15b).

Only when the obstacle’s normal force N4 satisfies in-
equality (35) can the middle walking wheels leave the ground
and climb the vertical surface of the obstacle. It can be seen
from Fig. 15a that θ3 must be less than 81.48° for the robot
to satisfy the static condition of the middle walking wheels
climbing the obstacle. In Fig. 15b, it can be seen that, when
θ3 reaches 81.48°, the height of the obstacle that the front
walking wheels have climbed onto is 71 mm.
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Figure 14. Curves of N2 as a function of θ3 at stage (b) in Fig. 5 under different friction coefficients: (a) the curve of N2 as a function of θ3
at stage (b) in Fig. 5 under the friction coefficient µ= 0.65; (b) the curve of N2 as a function of θ3 at stage (b) in Fig. 5 under the friction
coefficient µ= 0.75; (c) the curve of N2 as a function of θ3 at stage (b) in Fig. 5 under the friction coefficient µ= 0.85.

Figure 15. Obstacle-crossing situation of the robot at stage (d) in
Fig. 5 (α =−θ2): (a) curve of N4 as a function of θ3 at stage (d) in
Fig. 5 (α =−θ2); (b) curve of h as a function of θ3 at stage (d) in
Fig. 5 (α =−θ2).

From Fig. 15a and b, we can see that, when the height of
the obstacle is less than 71 mm, the middle walking wheels
can climb along the vertical surface of the obstacle away
from the ground at stage (d). However, further discussion
is still needed to determine whether the robot can consis-
tently satisfy inequality (35) during the climbing process of
the middle walking wheels.

Hence, by substituting h= 71 mm into Eqs. (32) and (33),
the curve of N4 as a function of θ3 when the middle walk-
ing wheels are climbing up the obstacle can be obtained (as
shown in Fig. 16).

When the middle walking wheels are climbing an obsta-
cle, θ3 decreases gradually. From Fig. 16, we see that N4
decreases as θ3 decreases during the climbing process of the
middle walking wheels. It can be found that N4 always satis-
fies inequality (35) when θ3 is less than 81.48°, which means
that the middle walking wheels can climb onto an obstacle
with a height of 71 mm. We also believe that the middle walk-
ing wheels can climb onto an obstacle as long as the height
of the obstacle is less than 71 mm. Therefore, the maximum
obstacle-crossing height of the robot satisfying the static con-
dition is 71 mm at obstacle-crossing stage (d).

At stage (f), the robot’s front and middle walking wheels
have climbed onto the upper surface of the obstacle. During

Figure 16. Curve of N4 as a function of θ3 when the middle walk-
ing wheels are climbing up the obstacle.

Figure 17. Obstacle-crossing situation of the robot at stage (f) in
Fig. 5: (a) curve of N6 as a function of θ3 at stage (f) in Fig. 5;
(b) curve of hs3 as a function of θ3 at stage (f) in Fig. 5.

the climbing process of the rear walking wheels, the obsta-
cle’s normal force N6 must always satisfy inequality (43).
Thus, by substituting µ= 0.75 into Eq. (42), the curve of N6
as a function of θ3 at stage (f) can be drawn (as shown in
Fig. 17a); simultaneously, we can draw the curve of hs3 as a
function of θ3 (as shown in Fig. 17b).

As the rear wheels climb upwards along the vertical sur-
face of the obstacle, θ3 gradually increases and the vertical

Mech. Sci., 15, 137–157, 2024 https://doi.org/10.5194/ms-15-137-2024



Z. Song et al.: Design and obstacle-crossing analysis of a four-link rocker-suspension robot 151

distance hs3 between the middle and rear walking wheels
gradually decreases. From Fig. 17a, it can be seen that in-
equality (43) is only satisfied when θ3 is less than 60.82°.
In Fig. 17b, we find that hs3 is equal to 48.7 mm when
θ3 = 60.82°, which means that the robot no longer meets
the obstacle-crossing static conditions when hs3 is less than
48.7 mm.

However, when hs3 is shorter than the radius of the wheels
(50 mm) during the actual obstacle-crossing process, the
static-force situation of the robot in Fig. 11 is no longer re-
alistic, and it can be considered that the rear walking wheels
can climb onto the upper surface of the obstacle. Moreover,
because the minimum value 48.7 mm of hs3 is shorter than
the wheel radius rw, it can be considered that the rear walk-
ing wheels can climb onto the obstacle, and the robot can
pass obstacle-crossing stage (f).

In this section, through numerical simulations, we have
explored the obstacle-crossing capability of the robot at
different obstacle-crossing stages using geometry and stat-
ics. From a geometric perspective, restricted by the motion
range of the four-link mechanism (A–B–C–D), the maximum
obstacle-crossing height of the robot at obstacle-crossing
stages (c) and (e) are 182.5 and 218.2 mm respectively.
From a statistical perspective, whether the robot can pass
stage (d) determines its maximum obstacle-crossing height.
The robot’s maximum obstacle-crossing height at stage (d)
is 71 mm. In addition, the friction coefficient µ between the
wheels and the ground must be large enough for the robot
to lift the primary rocker along the obstacle during obstacle-
crossing stage (b). Furthermore, at stage (f), only when the
vertical distance hs3 between the middle and rear walking
wheels is equal to the radius of the wheel (i.e. the robot still
satisfies inequality 43) can the rear walking wheels climb
onto the upper surface of the obstacle.

5 Physical prototype development

In the previous sections, the mechanical structure of the pro-
posed robot has been introduced, and the obstacle-crossing
capability of the proposed robot has been analysed through
modelling and simulations.

In this section, a prototype of the proposed robot is
developed (as shown in Fig. 18). The structural param-
eters and technical specifications of the prototype are
listed in Table 1. The geometric size of the prototype
is 789.5 mm× 454 mm× 595 mm (length×width× height),
and it has a total mass of 40 kg. The robot’s maximum for-
ward speed is about 5 m s−1, while its steering speed is ap-
proximately 24 ° s−1. Relying on the four-link rocker suspen-
sions on both sides, the robot can travel on uneven grass-
land (Fig. 18b). A differential bevel gear group and an active
pitch control device are located inside robot; together, these
form the differential pitching device (Fig. 18c). There is also
a steering device above the respective front and rear wheels

of the robot (Fig. 18d). By controlling the directions of the
front and rear walking wheels through the steering devices,
the robot can achieve in situ differential steering (Fig. 18e).

The robot’s mechatronic system is shown in Fig. 19. The
mechatronic system is composed of six parts: the control
system, the sensing system, the driving components, the
power system, the executing components and the robot’s
mechanical body. The robot’s control system is composed
of two controllers: (1) a low-level controller, which is a
DMC4420PC104 Motion Control Card (Leadshine, China),
and (2) an upper controller, which is the remote control held
by the operator. The motion commands sent by the upper
controller are decoded by the signal receiver and then trans-
mitted to the robot’s control system. After receiving the de-
coded signals, the control system sends the PWM signals and
controls the 11 motors (7 DC motors and 4 stepping motors)
of the robot through the driving components. Driven by the
executing components, the robot moves and then feeds back
the its status information (speed, steering angle, battery re-
maining capacity, GPS and so on) and the camera’s view to
the remote control. The DMC4420 Motion Control Card is
supplied electricity by a 40 V battery, and the executing com-
ponents are powered by a 24 V battery.

The robot’s status information uploaded by the sensing
system is visible on the handheld remote control, as shown in
Fig. 20 (this software has been independently developed by
us). According to the information, the operator can control
the motion of the robot by pulling the rocking bars.

This robot is a principal prototype that has been used to
verify the feasibility of the design scheme and robot control
methods. In the future, a prototype that is consistent with the
calculated design parameters will be developed. Following
this, a series of experiments, such as traversing a sandy land-
scape and climbing steps, will be carried out to verify the
obstacle-crossing capability and terrain adaptability of the
robot.

6 Conclusion

This paper proposes a design concept for a six-wheeled
rocker-suspension planetary exploration rover. Through a
differential pitching device, this robot can passively or ac-
tively maintain its main body’s balance in motion. The pro-
posed robot also has a four-link rocker suspension, which can
increase the instantaneous rotation radius of the rockers and
improve the obstacle-crossing capability of the robot.

In this paper, the mechanical design of the proposed robot
has been presented first. By dividing the robot’s obstacle-
crossing process into six stages, obstacle-crossing models for
the robot were established. The geometric and static condi-
tions for obstacle-crossing were then derived and demon-
strated for the robot. Through numerical simulations, the
obstacle-crossing capability of the robot was analysed, and
the maximum obstacle-crossing height of the robot was cal-
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Table 1. Structural parameters and technical specifications of the prototype.

Structural parameters Technical specifications

Parameter Value Parameter Value

m1 25 kg Motors Seven DC motors; four stepping motors
mw 2.5 kg Battery Lithium rechargeable
d1 100 mm Motion controllers Velocity control
d2 66 mm Maximum speed 5 m s−1

d3 123 mm Camera Charge-coupled device (CCD) camera
d4 85 mm Pitch controllers Position control
d5 318 mm Steer controllers Position control
d6 275 mm Steering speed 24° s−1

d7 80 mm
d8 210 mm
d9 115 mm
rw 50 mm

Figure 18. Physical prototype of the proposed robot: (a) the appearance of the robot; (b) the robot travelling on the uneven grassland; (c) the
differential pitching device in the robot; (d) the steering device; (e) the robot using in situ differential steering.

culated using both geometry and statics. Finally, a prototype
of the proposed robot was developed, and the mechatronic
system of the robot was introduced.

Compared with other traditional planetary rovers, this
robot can increase the instantaneous turning radius of its
rockers when encountering obstacles via a four-link mech-
anism connecting the primary and secondary rockers; this
means that the robot can climb over obstacles above the ra-
dius of the wheels without a complex perception and control
strategy. The maximum obstacle-crossing height of the robot
is 71 mm, and the obstacle-crossing height transformation ra-
tio – the ratio of the maximum obstacle-crossing height to
the wheel radius (Mertyüz et al., 2020) – reaches 1.42. Using
the differential pitching device, the robot can adapt to terrain
fluctuation via both active and passive modes. In the passive

adaptation mode, the influence of terrain fluctuations on the
pitch angle of the robot’s main body will be reduced. In the
active control mode, the robot can actively adjust the pitch
angle of its main body to a specific angle according to the
task requirements.

This robot provides a feasible design scheme for future
planetary exploration rovers that can improve the obstacle-
crossing capability and terrain adaptability of rocker-
suspension robots without a complex control strategy or ad-
ditional mechanical devices.

In addition to verifying the robot’s performance through
more experiments, further research will focus on optimizing
the robot’s structural parameters to maximize its obstacle-
crossing capability.
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Figure 19. Mechatronic system of the proposed robot.

Figure 20. Monitoring interface of the robot on the remote control.
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Appendix A: Nomenclature

Structural parameters

α The pitch angle of the main body relative to the ground
αl1 The pitch angle of the left primary rocker relative to the ground
αr1 The pitch angle of the right primary rocker relative to the ground
rt1 The instantaneous rotation radius of the primary rocker
rt2 The instantaneous rotation radius of the secondary rocker
d1 The length of connecting rod C–D in the four-link mechanism
d2 The length of connecting rods B–D and A–C in the four-link mechanism
d3 The length of connecting rod A–B in the four-link mechanism
d4 The length between the point A and the main body’s CoM (centre of mass)
d5 The horizontal length between the front walking wheels and the main body’s CoM
d6 The height of the rocker suspension
d7 The horizontal length between the middle walking wheels and point C
d8 The height of the secondary rocker
d9 The horizontal length between the rear walking wheels and point D
z1′ The number of teeth in bevel gear 1′

z2′ The number of teeth in bevel gear 2′

z3′ The number of teeth in bevel gear 3′

zw The number of worm’s heads
zwg The number of worm’s gear teeth
δl The rotation angle of the left rocker connecting shaft relative to the device base
δr The rotation angle of the right rocker connecting shaft relative to the device base
δ1′ The rotation angle of bevel gear 1′ relative to the device base
δ2′ The rotation angle of bevel gear 2′ relative to the device base
δ3′ The rotation angle of bevel gear 3′ relative to the device base
δw The rotation angle of the worm relative to the device base
δwg The rotation angle of the worm gear relative to the device base
δm The rotation angle of the DC motor relative to the device base
O0 {X0,Y0} The ground-fixed coordinate frame
O1 {X1,Y1} The robot’s body coordinate frame
(a, b) The coordinate of origin O1 expressed in the ground-fixed coordinate frame
TN2 The value of the rotation torque that N2 applies to the primary rocker in Fig. 3b
θ3 The included angle between the upper link (A–B) and the front link (A–C)
θ2 The included angle between the upper link (A–B) and the lower link (A–C)
h The height of the obstacle
rw The radius of the walking wheel
m1 The mass of the robot’s main body
mw The mass of the walking wheel
Ot The instantaneous centre of the rotation of the rockers
hs3 The vertical distance between the middle and rear walking wheels at stage (d)
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Static parameters

N1 The vertical support force of the obstacle to the front walking wheels
N2 The horizontal normal force exerted by the obstacle on the front walking wheels
N3 The vertical support force of the ground, stage (b), or obstacle, stage (f), to the middle walking wheels
N4 The horizontal normal force exerted by the obstacle on the middle walking wheels
N5 The support force of the ground to the rear walking wheels
N6 The horizontal normal force exerted by the obstacle on the rear walking wheels
f1 The horizontal frictional force between the obstacle and the middle walking wheels
f2 The vertical frictional force between the obstacle and the front walking wheels
f3 The horizontal frictional force between the ground, stage (b), or obstacle, stage (f), and the middle walking wheels
f4 The vertical frictional force between the obstacle and the middle walking wheels
f5 The horizontal frictional force between the ground and the rear walking wheels
f6 The vertical frictional force between the obstacle and the front walking wheels
µ The sliding friction coefficient between the wheels and the ground and the obstacle surface

Mathematical symbols

E1 rw+ d6 sinα+ (d4+ d5)cosα+ rt1 cos(θ3+α)

E2 rt1 cos(θ3+α)+ d4 cosα

E3 d6 cosα− (d4+ d5) sinα− rt1 sin(θ3+α)

E4 d6 sinα+ (d4+ d5)cosα+ rt1 cos(θ3+α)

E5 rw+ d6 cosα− (d4+ d5) sinα− rt1 sin(θ3+α)

E6 rw+ d8 sin(θ2+α)+ d7 cos(θ2+α)+ rt2 cos(θ3+α)

E7 rw+ d8 cos(θ2+α)+ (d1+ d9) sin(θ2+α)− rt2 sin(θ3+α)

E8 d8 cos(θ2+α)− d7 sin(θ2+α)− rt2 sin(θ3+α)

E9 (d1+ d9)cos(θ2+α)− d8 sin(θ2+α)− rt2 cos(θ3+α)

E10 d8 sin(θ2+α)+ d7 cos(θ2+α)+ rt2 cos(θ3+α)

E11 (d1+ d7+ d9)cos(θ2+α)

E12 d6 sinα+ d5 cosα

E13 rw+ d8 cos(θ2+α)− d7 sin(θ2+α)− rt2 sin(θ3+α)

E14 d8 cos(θ2+α)+ (d1+ d9) sin(θ2+α)− rt2 sin(θ3+α)

E15 (d1+ d9)cos(θ2+α)− d8 sin(θ2+α)− rt2 cos(θ3+α)− rw
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