Articles | Volume 14, issue 1
https://doi.org/10.5194/ms-14-193-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ms-14-193-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinematic and dynamic characteristics' analysis of a scissor multi-rod ring deployable mechanism
Bo Han
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China
Yuxian Yao
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Yuanzhi Zhou
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Yundou Xu
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China
Jiantao Yao
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China
Yongsheng Zhao
CORRESPONDING AUTHOR
Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China
Related authors
No articles found.
Shuai Zhang, Jiantao Yao, Wumian Zhao, and Chunjie Wei
Mech. Sci., 16, 821–830, https://doi.org/10.5194/ms-16-821-2025, https://doi.org/10.5194/ms-16-821-2025, 2025
Short summary
Short summary
This paper introduces a continuum-based layer jamming model (CLJM) for structures with a large number of layers, treating them as a continuous medium. The CLJM effectively analyzes internal stress distribution and deformation across different mechanical states. Validation via finite-element analysis and experiments shows strong agreement, demonstrating that the CLJM provides an accurate and efficient theoretical tool for designing variable-stiffness applications.
Pan Zhou, Jiantao Yao, Hongyu Zhang, Xuanhao Zhang, Shuaiqi kong, and Kunming Zhu
Mech. Sci., 14, 99–109, https://doi.org/10.5194/ms-14-99-2023, https://doi.org/10.5194/ms-14-99-2023, 2023
Short summary
Short summary
Lightweight and stable continuum robot design is a challenge. We propose a 65 g continuum robot formed using cruciform-arranged elastic sheets. It has low coupling, better bending characteristics in the deformation direction, and a large load capacity in the non-deformation direction, providing a new configuration for lightweight and dexterous continuum robots. Its kinematics model accuracy is experimentally verified. Nucleic acid detection demonstration proves its dexterity and adaptability.
Cited articles
Cao, W. A., Yang, D. H., and Ding, H. F.:
Topological structural design of umbrella-shaped deployable mechanisms based on new spatial closed-loop linkage units, J. Mech. Design, 140, 062302, https://doi.org/10.1115/1.4039388, 2018.
Chen, C., Li, T., Tang, Y., and Wang, Z.:
Analysis and control of state jump in space deployable structures under alternating temperature loads, Mech. Sci., 12, 59–67, https://doi.org/10.5194/ms-12-59-2021, 2021.
Chen, Y. and You Z.: On mobile assemblies of Bennett linkages, P. Roy. Soc. A-Math. Phy., 464, 1275–1293, https://doi.org/10.1098/rspa.2007.0188, 2008.
Chen, Y., You, Z., and Tarnai, T.:
Threefold-symmetric Bricard linkages for deployable structure, Int. J. Solids Struct., 42, 2287–2301, https://doi.org/10.1016/j.ijsolstr.2004.09.014, 2005.
Chen, Y., Feng J., and Sun, Q. Z.:
Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry, Int. J. Solids Struct., 139–140, 1–14, https://doi.org/10.1016/j.ijsolstr.2017.05.008, 2017.
Cherniavsky, A. G., Gulyayev, V. I., Gaidaichuk, V., and Fedoseev, A. I.:
Large deployable space antennas based on usage of polygonal pantograph, J. Aerospace Eng., 18, 139–145, https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(139), 2005.
Dai, L. and Xiao, R.: Optimal design and analysis of deployable antenna truss structure based on dynamic characteristics restraints, Aerosp. Sci. Technol., 106, 106086, https://doi.org/10.1016/j.ast.2020.106086, 2020.
Dai, Y., Liu, Z., Qi, Y., Zhang, H., You, B., and Gao, Y.:
Spatial cellular robot in orbital truss collision-free path planning, Mech. Sci., 11, 233–250, https://doi.org/10.5194/ms-11-233-2020, 2020.
Focardi, P. and Harrell, J. A.: NISAR flight feed assembly measurement campaign, in: IEEE 2019 13th European Conference on Antennas and Propagation (EuCAP), 31 March–5 April 2019, Krakow, Poland, 1–3, 2019.
Focardi, P. and Vacchione, J. D.: NISAR flight feed assembly: Evolution of the design from Initial concept to final configuration”, in: IEEE 2019 13th European Conference on Antennas and Propagation (EuCAP), 31 March–5 April 2019, Krakow, Poland, 1–4, 2019.
Han, B., Xu, Y. D., Yao, J. T., Zheng, D., Li, Y. G., and Zhao, Y. S.:
Design and analysis of a scissors double-ring truss deployable mechanism for space antennas, Aerosp. Sci. Technol., 9, 105357, https://doi.org/10.1016/j.ast.2019.105357, 2019.
Han, B., Xu, Y. D., Yao, J. T., Zheng, D., and Guo, L. Y.:
Type synthesis of deployable mechanisms for ring truss antenna based on constraint-synthesis method, Chinese J. Aeronaut., 33, 2445–2460, https://doi.org/10.1016/j.cja.2019.07.015, 2020.
He, Z. P., Shi, Y., Feng, X. C., Li, Z., Zhang, Y., Dai, C. A., Wang, P. F., and Zhao, L. Y.:
Numerical analysis of space deployable structure based on shape memory polymers, Micromachines, 12, 833, https://doi.org/10.3390/mi12070833, 2021.
Huang, L., Zeng, P., Yin, L., and Huang, J.:
Design of an origami-based cylindrical deployable mechanism, Mech. Sci., 13, 659–673, https://doi.org/10.5194/ms-13-659-2022, 2022.
Kiani, S. H., Marey, M., Rafique, U., Shah, S. I. H., Bashir, M. A., Mostafa, H., Wong, S. W., and Parchin, N. O.:
A Deployable and Cost-Effective Kirigami Antenna for Sub-6 GHz MIMO Applications, Micromachines, 13, 1735, https://doi.org/10.3390/mi13101735, 2022.
Kobayashi, M. M., Stocklin, F., Pugh, M., Kuperman, I., Bell, D., El-Nimri, S., Johnson, B., Huynh, N., Kelly, S., Nessel, J., Svitak, A., Williams, T., Linton, N., Arciaga, M., and Dissanayake, A.:
NASA's high-rate Kaband downlink system for the NISAR mission, Acta Astronaut., 159, 358-361, https://doi.org/10.1016/j.actaastro.2019.03.069, 2019.
Liu, T. H. and Hao, G. B.: Design of deployable structures by using bistable compliant mechanisms, Micromachines, 13, 651, https://doi.org/10.3390/mi13050651, 2022.
Ma, X., Li, Y., Li, T., Dong, H., Wang, D., and Zhu, J.:
Design and analysis of a novel deployable hexagonal prism module for parabolic cylinder antenna, Mech. Sci., 12, 9–18, https://doi.org/10.5194/ms-12-9-2021, 2021.
Medzmariashvili, E., Tserodze, S., Gogilashvili, V., Sarchimelia, A., Chkhikvadze, K., Siradze, N., Tsignadze, N., Sanikidze, M., Nikoladze, M., and Datunashvili, G.:
New variant of the deployable ring-shaped space antenna reflector, Space Commun., 22, 41–48. https://doi.org/10.3233/SC-2009-0351, 2009.
Meguro, A., Tsujihata, A., Hamamoto, N., and Homma, M.:
Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII, Acta Astronaut., 47, 147–152, https://doi.org/10.1016/S0094-5765(00)00054-0, 2000.
Meguro, A., Shintate, K., Usui M., and Tsujihata, Akio.:
In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII, Acta Astronaut., 65, 1306–1316, https://doi.org/10.1016/j.actaastro.2009.03.052, 2009.
Meng, Q. Z., Xie, F. G., Tang, R. J., and Liu, X. J.:
Novel closed-loop deployable mechanisms and integrated support trusses for planar antennas of synthetic aperture radar, Aerosp. Sci. Technol., 129, 107819, https://doi.org/10.1016/j.ast.2022.107819, 2022.
Nie, R., He, B. Y., Zhang, L. H., and Fang, Y. G.:
Deployment analysis for space cable net structures with varying topologies and parameters, Aerosp. Sci. Technol., 68, 1-10, https://doi.org/10.1016/j.ast.2017.05.008, 2017.
Okhotkin, K. G., Vlasov, A. Y., Zakharov, Y., and Annin, B. D.:
Analytical modeling of the flexible rim of space antenna reflectors, J. Appl. Mech. Tech. Phy., 58, 924–932, https://doi.org/10.1134/S0021894417050194, 2017.
Shi, C., Guo, H. W., Zheng, Z. G., Li, M., and Liu, R. Q.:
Conceptual configuration synthesis and topology structure analysis of double-layer hoop deployable antenna unit, Mech. Mach. Theory, 129, 232–260, https://doi.org/10.1016/j.mechmachtheory.2018.08.005, 2018.
Song, X. K., Deng, Z. Q., Guo, H. W., Liu, R. Q., Li, L. F., and Liu, R. W.:
Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna, Mech. Mach. Theory, 109, 95–125, https://doi.org/10.1016/j.mechmachtheory.2016.10.019, 2017.
Tian, D., Gao, H., Jin, L., Liu, R., Zhang, Y., Shi, C., and Xu, J.:
Design and kinematic analysis of a multifold rib modular deployable antenna mechanism, Mech. Sci., 13, 519–533, https://doi.org/10.5194/ms-13-519-2022, 2022.
Vu, K. K., Richard Liew, J. Y. R., and Anandasivam, K.:
Deployable tension-strut structures: from concept to implementation, J. Constr. Steel Res., 62, 195–209, https://doi.org/10.1016/j.jcsr.2005.07.007, 2006.
Wang, J. Y. and Kong, X. W.:
Deployable polyhedron mechanisms constructed by connecting spatial single-loop linkages of different types and/or in different sizes using S joints, Mech. Mach. Theory, 124, 211–225, https://doi.org/10.1016/j.mechmachtheory.2018.03.002, 2018.
Wang, S., Huang, H. L., Jia, G. L., Li, B., Guo, H. W., and Liu, R. Q.:
Design of a novel three-limb deployable mechanism with mobility bifurcation, Mech. Mach. Theory, 172, 104789, https://doi.org/10.1016/j.mechmachtheory.2022.104789, 2022.
Wang, Y., Deng, Z. Q., Liu, R. Q., Yang, H., and Guo, H. W.:
Topology structure synthesis and analysis of spatial pyramid deployable truss structures for satellite SAR antenna, Chin. J. Mech. Eng., 27, 683–692, https://doi.org/10.3901/CJME.2014.0422.081, 2014.
Wang, Y., Liu, R. Q., Yang, H., Cong, Q., and Guo, H. W.:
Design and deployment analysis of modular deployable structure for large antennas, J. Spacecraft Rockets, 52, 1101-1111, https://doi.org/10.2514/1.A33127, 2015.
Wu, M., Zhang, T., Xiang, P., and Guan, F.:
Single-layer deployable truss structure driven by elastic components, J. Aerospace Eng., 32, 04018144, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000977, 2019.
Xing, Z. G. and Zheng, G. T.:
Deploying Process Modeling and attitude control of a satellite with a large deployable antenna, Chinese J. Aeronaut., 27, 299–312, https://doi.org/10.1016/j.cja.2014.02.004, 2014.
Xu, Y. D., Chen, L. L., Liu, W. L., Yao, J. T., Zhu, J. L., and Zhao, Y. S.:
Type synthesis of the deployable mechanisms for the truss antenna using the method of adding constraint chains, J. Mech. Robot., 10, 041002, https://doi.org/10.1115/1.4039341, 2018.
Xu, Y. D., Guo, J. W., Guo, L. Y., Liu, W. L., Yao, J. T., and Zhao, Y. S.:
Design and analysis of a truss deployable antenna mechanism based on a 3UU-3URU unit, Chinese J. Aeronaut., 32, 2743–2754, https://doi.org/10.1016/j.cja.2018.12.008, 2019.
Xu, Y. D., Chen, Y., Liu, W. L., Ma, X. F., Yao, J. T., and Zhao, Y. S.:
Degree of freedom and dynamic analysis of the multi-loop coupled passive-input overconstrained deployable tetrahedral mechanisms for truss antennas, J. Mech. Robot., 12, 011010, https://doi.org/10.1115/1.4044729, 2020.
Yang, H., Guo, H. W., Wang, Y., Liu, R. Q., and Li, M.:
Design and experiment of triangular prism mast with tape-spring hyperelastic hinges, Chin. J. Mech. Eng., 31, 1–10, https://doi.org/10.1186/s10033-018-0242-5, 2018.
Yang, H., Fan, S. S., Wang, Y., and Shi, C.:
Novel Four-Cell Lenticular Honeycomb Deployable Boom with Enhanced Stiffness, Materials, 15, 306, https://doi.org/10.3390/ma15010306, 2022.
Zhang, G., He, J., Guo, J., and Xia, X.:
Dynamic modeling and vibration characteristics analysis of parallel antenna, Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022, 2022.
Zhang, W. X., Ding, X. L., and Dai, J. S.:
Design and stability of operating mechanism for a spacecraft hatch, Chinese J. Aeronaut., 22, 453–458, https://doi.org/10.1016/S1000-9361(08)60125-9, 2009.
Zhao, T. S., Geng, M. C., Chen, Y. H., Li, E. W., and Yang, J. T.:
Kinematics and dynamics Hessian matrices of manipulators based on screw theory, Chin. J. Mech. Eng., 28, 226–235, https://doi.org/10.3901/CJME.2014.1230.182, 2015.
Zhuang, J. D. and Ju, Y. S.: Deployable and conformal planar micro-devices: Design and model validation, Micromachines, 5, 528–546, https://doi.org/10.3390/mi5030528, 2014.
Short summary
A double-layer ring truss deployable antenna mechanism is proposed, which is connected by a scissor-like structure. The degrees of freedom, six-dimensional velocity, and acceleration are calculated using spiral theory, and the dynamic model is established. Simulation software is used to verify the simulation, and the prototype is made at a reduced scale. Because the satellite antenna is very important, we decided to study the supporting frame.
A double-layer ring truss deployable antenna mechanism is proposed, which is connected by a...