Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-31-2022
https://doi.org/10.5194/ms-13-31-2022
Research article
 | 
07 Feb 2022
Research article |  | 07 Feb 2022

Kinematic and dynamic analysis of an omnidirectional mobile platform driven by a spherical wheel

Luis Daniel Filomeno Amador and Eduardo Castillo Castañeda

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32, https://doi.org/10.5194/ms-14-19-2023,https://doi.org/10.5194/ms-14-19-2023, 2023
Short summary
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13, https://doi.org/10.5194/ms-14-1-2023,https://doi.org/10.5194/ms-14-1-2023, 2023
Short summary
Dynamic modeling and vibration characteristics analysis of parallel antenna
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022,https://doi.org/10.5194/ms-13-1019-2022, 2022
Short summary
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990, https://doi.org/10.5194/ms-13-979-2022,https://doi.org/10.5194/ms-13-979-2022, 2022
Short summary
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978, https://doi.org/10.5194/ms-13-961-2022,https://doi.org/10.5194/ms-13-961-2022, 2022
Short summary

Cited articles

Agull, J., Cardona, S., and Vivancos, J.: Kinematic of vehicles with directional sliding wheels, Mech. Mach. Theory., 22, 295–301, 1987. 
Angeles, J.: Fundamental of Robotics Mechanical Systems: Theory, Methods and Algorithms, 3rd Edn., Springer Science, Alemania, 2007. 
Angeles, J. and Lee, S.: The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement, T. ASME, 55, 243–244, 1988. 
Balkcom, D. J., Kavathekar, P. A., and Mason, M. T.: Time optimal trajectories for an omnidirectional vehicle, International Journal Robotics Research, 25, 985, https://doi.org/10.1177/0278364906069166, 2009. 
Barraquand, J. and Latombe, J. C.: On non-holonomic niobile robots and optimal manoeuvring, Revue d'Intelligence Artificielle, Vol. 3-2, 77–103, 1989. 
Download
Short summary
In mobile robot development, the designer focuses on the novelty of the final element, leaving out the mobile platform evolution; the chief problem with wheeled mobile robots is the restricted movement in the workspace due to the necessity for the system's reorientation. Our goal is to realize a wheeled mobile robotic system that can generate an omnidirectional displacement without the need to redirect the wheels, thus guaranteeing continuous operation.