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Abstract. The increased use of spherical wheels has allowed mobile robots to have a higher degree of maneu-
verability, less complex path planning and less complex control schemes. The geometry and design of the mobile
robot are the principal attributes that guarantee an omnidirectional motion. Furthermore, the platform uses an
active spherical wheel and four passive spherical wheels to get the best stability when the robot uses a terminal
element (Kärcher). The proposed model has been designed to improve the omnidirectional motion issues, such
as vibration into the platform or lack of punctual contact between the wheel and the floor, compared to mobile
robots using Mecanum wheels and more than one active wheel; due to the design concept, all the mathematical
formulations, kinematics and dynamics presents how the models are validated with computer simulations.

1 Introduction

As mobile robotics continues to evolve, its application has
diversified from service robots to space exploration robots.
In the development of the mobile robot, the designer focuses
on the novelty of the final element, leaving out the mobile
platform evolution. The chief problem with wheeled mobile
robots is the restricted movement in workspace due to the ne-
cessity for system reorientation. Our goal is to get a wheeled
mobile robotic system that can generate an omnidirectional
displacement without the need to redirect the wheels, thus
guaranteeing continuous operation. Additionally, this would
allow the mobile robotic to operate in small spaces without
the need of reorientation (Doroftei et al., 2007).

The design of the mobile platform is mainly constituted by
geometric model and by the type of wheels used (Muir and
Neuman, 1986). These characteristics are strongly related to
kinematic analysis. The odometry technique uses a geomet-
ric body in a general framework to locate it later in any point
of our reference. This is the principle that uses the odometry
technique (Agull et al., 1987) that provides important appli-
cations as satellite locations, trajectory assignment and even
artificial intelligence applications. Subsequently, after we get
the position analysis, the velocity analysis is included within

the same reference frame. The acceleration is defined as the
change in velocity within a time range (Muir and Neuman,
1987).

Besides, we consider the masses of each element in the
platform and as well as external forces to generate a dynamic
model that can predict the motor’s behavior.

Although there are platforms that have solved the omni-
directional problem (redirection of the mobile platform), its
implementation requires a high construction cost and much
more complex control systems. In the case of the Seekur
robot (Roland, 2004), it uses eight motors to steer four ac-
tive wheels and thus generates the omnidirectional move-
ment of the platform. The Institute of Technology of Leibniz
University Hannover in Germany developed another solution
which implements three spherical active wheels, each one
driven by two motors (Runge et al., 2014). The Robot De-
velopment Engineering Laboratory of Tohoko Gakuin Uni-
versity in Japan developed a newer solution, one that has a
spherical active wheel driven by three motors with Swedish-
type rollers (Kumagai, 2010). The AZIMUT robot (Clavien
et al., 2018) represents a decentralized omnidirectional sys-
tem. The Massachusetts Institute of Technology (MIT) pre-
sented a mobile platform that was supported by spherical
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wheels (West and Ascada, 1995) using rollers to transmit the
movement with three active wheels. The reports mentioned
above relate the fact that the geometry and type of wheels
used are fundamental components in the design (Muir and
Neuman, 1986), i.e., from triangular geometry (Orozco et al.,
2020) to dodecagonal geometry (Orozco, 2018), using stan-
dard wheels (Muñoz et al., 2007), Swedish wheels (Lee et
al., 2007) or spherical wheels (Ishida and Miyamoto, 2010).

The use of actuated spherical wheels in mobile platforms
drastically simplifies the control of the robot, as well as the
reduction of costs in its manufacture (Zhao BeMent, 1992).
Kinematic and dynamic analysis ensures the effectiveness
in the spherical wheel implementation (Angeles and Lee,
1988). Kinematics also allows for implementing the use of
odometry to program robot movements as satellite location
applications (Agull et al., 1987).

This paper is based on the kinematic and dynamic model
of an omnidirectional mobile platform (OMP) with an ac-
tive spherical wheel driven by two motors and four passive
wheels as support. The kinematic and dynamic conditions are
strongly linked with the geometry, the location of the wheels
and with the position analysis of each wheel.

The Sheth–Uicker convention is used in the contact point
between the wheel and the ground as planar contact (Muir
and Neuman, 1987). This method presents the forward kine-
matics in an analogous way to manipulative robots. For the
dynamic analysis, the Lagrange method is used where the
Lagrangian is composed only of kinetic energy, because this
method considers that the platform only moves on flat sur-
faces. The holonomic restrictions, which are directly linked
with the movement of the platform, are raised within the op-
erating frame of the robot, which guarantees that the “sweep”
condition is wholly rejected. This strategy allows energy op-
timization in the actuators; in the same way, a more straight-
forward control is implied to achieve the system’s omnidi-
rectional movement.

2 Platform design

This paper presents the kinematic and dynamic model of a
mobile platform driven by one active spherical wheel con-
structed of rubber and four passive wheels built of steel; see
Fig. 1. The design will be used in a cleaning robot (Fig. 2)
(Orozco et al., 2020). The dimensions and weight are shown
in Table 1. Some of the principal details are the Kärcher pres-
sure system (used as a terminal element), the pan–tilt rotation
(used as the reorientation’s Kärcher system) and the robot’s
energy conversion system.

The kinematic analysis of a mobile robot is a direct anal-
ogy with the methodology used in manipulator robotics; the
main differences between both systems are the restrictions
and the type of joints used (d’Andrea-Novel et al., 1991).

In the manipulator model, most of the links are treated
as solid bodies in the form of an open kinematic chain that

Figure 1. The main feature of the model is the omnidirectional plat-
form displacement. This characteristic allows us to generate a kine-
matic and dynamic model (Muir and Neuman, 1987).

Figure 2. Pressure cleaning robot.

generally uses rotational or prismatic joints (Angeles, 2007).
When the modeling of the platform is presented, it is com-
mon to consider the system as n closed kinematic chains (the
assign of the variable n is the number of wheels of the system
with ground contact) (Yun and Yamamoto, 1993). The joint
that generates the contact between the wheel and the ground
is used as a contact of superior torque, which applies the
Sheth–Uicker convention (Muir and Neuman, 1987). This al-
lows us to consider the contact as a lower pair (planar con-
tact).

From the dynamic point of view, the analysis becomes
more complex in that it becomes non-linear if the designer
wants to contemplate all the system interaction effects (Zhao
and BeMent, 1992). In this paper, the interactions that cor-
rupt the linearity of the model are rejected. This is due to the
movement of the platform, without any kind of interference,
like vibration or any kind of external force. Figure 3 shows
the elements that make up the mobile platform.

The platform has two DC (direct current) motors that by
rollers (constructed of rubber) can transfer the angular veloc-
ity to the active spherical wheel; see Fig. 4. The platform also
has a shock absorber system that guarantees the continuous
actuated spherical wheel contact (Balkcom et al., 2009). The
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Figure 3. The platform elements, with (a) platform top view and (b) platform side view. Labels: (a) roller, (b) motor, (c) roller ball (transfer),
(d) roller ball (support), (e) support base, (f) active spherical wheel, and (g) active spherical wheel support.

Table 1. Features of pressure cleaning robot.

Kind of wheels Spherical

Composition Driven spherical wheel
(4 passive spherical wheels)

Traction Omnidirectional
Structure Modern vehicle structure
Dimensions (70.5 cm× 55 cm× 25 cm) – (I -w-h)
Mass 15 kg
Velocity 3 m/s
Material Aluminum (Bosch Perfil)

Figure 4. Wheel driven by two motors.

platform includes four roller-ball-type passive wheels imple-
menting bearings as the mechanism of continuous contact
with the ground.

3 Mobile platform proposal

3.1 Positional analysis

In this section, the coordinate system corresponding to the
articulations of the mobile platform are assigned. As men-
tioned above, n closed kinematic chains are used where the
variable n corresponds to the number of wheels that have
contact with the ground; this contact is generated as a higher
torque contact.

In this paper, the design implements the Sheth–Uicker
convention (Muir and Neuman, 1987). The Sheth–Uicker

Figure 5. (a) Planar contact and (b) point contact.

convention model shows the high torque contact as a planar
pair contact. See Fig. 5; as the result, we exclude the ambi-
guities of the transformation matrices.

After considering this convention, we apply each link’s
coordinate system in the proposed model (Barraquand and
Latombe, 1989). The result is illustrated in Fig. 6, and the
corresponding matrices are given in Eqs. (1), (2), (3) and (4).
Where L1, L2, L3, L4, and O are the roller coordinate axes,
and Cb, Ca ,ma ,mb, la , and lb are the dimensions of the plat-
form (each letter indicates the dimension assignment). The
matrices shown in Eqs. (1), (2), (3) and (4) describe the co-
ordinate system from the central point R.

RTL1 =


cos(π4 ) −sin(π4 ) 0 ma
sin(π4 ) cos(π4 ) 0 mb
0 0 1 lb
0 0 0 1

 , (1)

RTL2 =


cos( 3π

4 ) −sin( 3π
4 ) 0 ma

sin( 3π
4 ) cos( 3π

4 ) 0 −mb
0 0 1 lb
0 0 0 1

 , (2)

RTL3 =


cos(−π4 ) −sin(−π4 ) 0 −ma
sin(−π4 ) cos(−π4 ) 0 −mb
0 0 1 lb
0 0 0 1

 , (3)

RTL4 =


cos(− 3π

4 ) −sin(− 3π
4 ) 0 −ma

sin(− 3π
4 ) cos(− 3π

4 ) 0 mb
0 0 1 lb
0 0 0 1

 . (4)
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The matrices are shown in Eqs. (5), (6), (7) and (8), which
present the relationship that exists between point R and point
of contact O.

L1TO =


√

2
2

√
2

2 0 ma

−

√
2

2

√
2

2 0 −mb
0 0 1 (la − lb)
0 0 0 1

 , (5)

L2TO =


−

√
2

2

√
2

2 0 ma

−

√
2

2 −

√
2

2 0 mb
0 0 1 (la − lb)
0 0 0 1

 , (6)

L3TO =


√

2
2

√
2

2 0 −ma
√

2
2 −

√
2

2 0 −mb
0 0 1 (la − lb)
0 0 0 1

 , (7)

L4TO =


−

√
2

2 −

√
2

2 0 −ma
√

2
2 −

√
2

2 0 mb
0 0 1 (la − lb)
0 0 0 1

 . (8)

4 Kinematic and dynamic analysis

4.1 Kinematic analysis

Now that the positional analysis of the mobile robot is
known, Eqs. (9) and (10) present the velocity analysis. As
mentioned above, an omnidirectional platform is contem-
plated in conjunction with the manipulator element. The cor-
responding equations are presented as

Vx = w1R cos(−α)+w2R cos(α), (9)
Vy = −w1R sin(−α)+w2R sin(α), (10)

where w is the angular velocities of the motors, R is the ra-
dius of the roller with spherical wheel contact, Vx is the lin-
ear velocity in the x-axis direction, Vy is the linear velocity
in the y-axis direction, and α is the roll inclination angle with
x-axis reference.

The spherical wheel contact with the roller is considered
continuous contact with a constant relation in speeds, where
the slip that may exist in them is neglected. (This is just a
consideration to develop the dynamical model to guarantee
the linear model in the platform.)

w1R = wrr,

wr =
w1R

r
.

We know the linear speed of the wheel is

v = rwr .

From the above equation, we obtain

v = r
w1R

r
,

v = w1R, (11)

where wr is the angular spherical wheel velocity, and r is the
spherical wheel radius.

After defining the relationships between the speed of the
roller and the spherical wheel, we obtain[
vx
vy

]
=

[ √
2

2 R
√

2
2 R

−

√
2

2 R
√

2
2 R

]
·

[
w1
w2

]
. (12)

Considering the angular velocity obtained by the manipulator
of the mobile robot, we get vx
vy
w

=

√

2
2 R

√
2

2 R 0
−

√
2

2 R
√

2
2 R 0

0 0 1

 ·
 w1
w2
wk

 , (13)

where wk is the mobile robot’s angular velocity.
In this way, the Jacobian matrix is

J =


√

2
2 R

√
2

2 R 0
−

√
2

2 R
√

2
2 R 0

0 0 1

 . (14)

This analysis corresponds to the forward kinematics, and to
obtain the inverse kinematics, we use

v = Jw,

w = J−1v. (15)

Equation (15) is justified by

Det(J )= R2. (16)

As we can see from the Eq. (16) result, the J determinant
is constant; it represents an advantage due to fact that the
platform displacement does not present ambiguities.

4.2 Holonomic constraints

In this section, the restrictive dynamic equations are defined.
We assumed the robot has one active wheel driven by two
motors.

It is necessary to formulate an equation that guarantees
that the mobile robot will roll and not slide.

Figure 7 shows the constraint diagram that guarantees the
bearing, and we obtain

vx cos(θ ) − vy sin(θ ) =

√
2

2
Rw1+

√
2

2
Rw2,

vx sin(θ ) + vycos(θ ) =−

√
2

2
Rw1+

√
2

2
Rw2.
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Figure 6. Coordinate system assignment.

Figure 7. Mobile platform path.

Restructuring the equations and representing them in a ma-
trix way, we receive[

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

][
vx
vy

]
=

[ √
2

2 R(w1+w2)
√

2
2 R(w2 − w1)

]
.

From the previous equation, a solution condition can be pro-
posed:

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

][
vx
vy

]
−

[ √
2

2 R(w1+w2)
√

2
2 R(w2 − w1)

]
= 0

[
cos(θ ) −sin(θ ) −

√
2

2 R −

√
2

2 R

sin(θ ) cos(θ )
√

2
2 R −

√
2

2 R

]
︸ ︷︷ ︸

R(θ )

 vx
vy
w1
w2


︸ ︷︷ ︸

Ṡ

=

[
0
0

]
. (17)

4.3 Dynamic analysis

In this section, the inverse dynamic equations are gener-
ated, where positions, speeds and motor accelerations are
obtained. The Lagrange analysis is used in mobile robotic
systems (Dhaouadi and Abu Hatab, 2013).

d
dt

(
∂K

∂Ṡi
) −

∂K

∂Si
= τi − r1iλ1 − r2iλ2 , (18)

where i = 1, 2, 3, 4; K is the total system’s energy, τi is the
generalized torque, λ1 and λ2 are Lagrange multipliers, rji

represents the matrix R(θ ) elements, S is the position vector,
and Ṡ is the velocity vector.

[
cos(θ ) −sin(θ ) −

√
2

2 R −

√
2

2 R

sin(θ ) cos(θ )
√

2
2 R −

√
2

2 R

]

=

[
r11 r12 r13 r14
r21 r22 r23 r24

]
(19)

The total system’s energy is given by

K = KT+KR,

whereKT is the translational energy, andKR is the rotational
energy.

The potential energy is neglected because it is considered
a horizontal not vertical displacement; therefore, U = 0, (Li
et al., 2015).

The translational energy is

KT =
1
2
M(v2

x + v
2
y), (20)

M =Mp+MRA+MRP,

where Mp is the platform mass, MRA is the active wheel
mass, and MRP is the passive wheel mass.

On the other hand, the rotational energy is

KR =
1
2

(IR+ IM)w2
+

1
2
IW(w2

1 +w
2
2), (21)

where IR is the robot inertia tensor, IM is the spherical active
wheel inertia tensor, and IW is the roller ball inertial tensor.

In this way, the energy equation that represents the mobile
platform is generated:

K =
1
2

(Mp+MRA+MRP)(v2
x + v

2
y)+

1
2

(IR+ IM)w2

+
1
2
IW(w2

1 +w
2
2), (22)

Applying the Lagrange equation, we obtain

(Mp+MRA+MRP)v̇x =−λ1 cos(θ )− λ2 sin(θ ), (23)
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Figure 8. Mobile platform path.

(Mp+MRA+MRP)v̇y = λ1 sin(θ )− λ2 cos(θ ), (24)

(IR+ IM)ẇ+ Iwẇ1 =

√
2

2
R(λ1 − λ2), (25)

(IR+ IM)ẇ+ Iwẇ2 =

√
2

2
R(λ1 + λ2). (26)

The dynamic model presented above describes the omnidi-
rectional platform displacement considering the restrictions
raised above. It is a single active wheel located in the plat-
form mass center, which greatly simplifies the model.

5 Numerical kinematic and dynamic validation

5.1 Numerical kinematic validation

Validating the mobile platform kinematics consists of the lin-
ear velocity equation simulation (see Eqs. 9 and 10) to later
integrate them and obtain the object’s position, as shown be-
low.

Vx = w1R cos(−α)+w2R cos(α),
Vy = −w1R sin(−α)+w2R sin(α).

Figure 8 describes the mobile platform path to follow, and
Fig. 9 describes the platform displacement.

5.2 Numerical dynamic validation

A scenario with a variable inclination slope is considered
(Fig. 10). This gives the necessary torque to overcome the in-
clination force; the junction is considered a punctual rubber–
concrete contact, and the friction coefficient is µT .

The mobile platform is considered to have a wheel acti-
vated by two motors, which implies the driven variable de-
pends on w1 and w2.

Obtaining the necessary torque to overcome the F r force
and the F g component that prevents the movement of the
platform in the direction of F implies the use of Eqs. (20)
and (21), considering the potential energy U , which is ana-
lytically expressed as

L = K − U,

where L is the Lagrangian.
Equation (18) becomes

d
dt

(
∂L

∂Ṡi

)
−
∂L

∂Si
= τi − τl, (27)

where τi − τl represents the generalized non-conservative
forces (τi is the wheel torque, and τl is the friction contact
torque), S is the position vector, and Ṡ is the velocity vector.

By substituting the kinetic and potential energy equations
in L, we obtain

L =KT +KR − U,

U = mgh,

where m is mass, g is acceleration, and h is height.
Obtaining h implies considering the height of the object

when both w1 and w2 are active (see Fig. 11).
Therefore, we obtain

h =

√
1
2
X2

1 +X1X2+
1
2
X2

2 − (
1
2
X2

1 +X1X2+
1
2
X2

2)(cosα)2.

By replacing the values in L, we obtain

L=
1
2

(Mp+MRA+MRP)(v2
x + v

2
y)

+
1
2
IW(w2

1 +w
2
2)−mgh. (28)

By substituting Eq. (28) into Eq. (27) and solving the Euler–
Lagrange equation, we obtain

τ1 = IWα1+

[
1
2
mg

(
X1+X2− (X1+X2)(cosα)2

h

)]
+µT Fn,

τ2 = IWα2+

[
1
2
mg

(
X1+X2− (X1+X2)(cosα)2

h

)]
+µT Fn,

where α1 and α2 are the accelerations due to the rollers, X1
and X2 are the platform positions due to roller speed, µT is
the dynamic friction coefficient, Fn is the normal force on
the active wheel, and the equation simulations τ1 and τ2 are
in Fig. 12.

By validating the dynamic part, the equations were sim-
ulated where the following values are considered: Mp =

10.1 kg, MRA = 0.5 kg, MRP = 0.4 kg, IR = diag (0.6895),
and IM and IW = diag (0.0125). In this way the result in
the dynamic model brings the congruence with the kinematic
model. This reflects the Euler–Lagrange equation use with
the omnidirectional mobile platforms.
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Figure 9. Mobile platform displacement.

Figure 10. Forces diagram.

6 Conclusion

Concluding, the design based on an active wheel and four
passive wheels guarantees the omnidirectional displacement
in the workspace with less complex design and construction.

In this paper, the kinematic and dynamic modeling of an
omnidirectional mobile platform with an active wheel and

Figure 11. Inclined displacement.

four passive wheels was presented and validated. The active
wheel uses two motors to generate its movement; the Sheth–
Uicker convention was essential to locate each element of the
mobile platform. In this way, the velocity analysis is summa-
rized to simplify the position diagram and observe its change

https://doi.org/10.5194/ms-13-31-2022 Mech. Sci., 13, 31–39, 2022
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Figure 12. Torque inclination.

over time. The torque reflects the congruence with the kine-
matic equations, although the dynamic equation rejects the
external forces.

The results generated in this article support the principle
that a spherical wheel is the best option for a mobile platform
when considering that the designer wants to build a land mo-
bile robot. Due to the construction of this mobile platform,
a smaller budget is required and less control in the program-
ming of displacement is necessary.
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