Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-257-2022
https://doi.org/10.5194/ms-13-257-2022
Research article
 | 
17 Mar 2022
Research article |  | 17 Mar 2022

A novel flying–walking power line inspection robot and stability analysis hanging on the line under wind loads

Xinyan Qin, Bo Jia, Jin Lei, Jie Zhang, Huidong Li, Bo Li, and Zhaojun Li

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32, https://doi.org/10.5194/ms-14-19-2023,https://doi.org/10.5194/ms-14-19-2023, 2023
Short summary
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13, https://doi.org/10.5194/ms-14-1-2023,https://doi.org/10.5194/ms-14-1-2023, 2023
Short summary
Dynamic modeling and vibration characteristics analysis of parallel antenna
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022,https://doi.org/10.5194/ms-13-1019-2022, 2022
Short summary
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990, https://doi.org/10.5194/ms-13-979-2022,https://doi.org/10.5194/ms-13-979-2022, 2022
Short summary
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978, https://doi.org/10.5194/ms-13-961-2022,https://doi.org/10.5194/ms-13-961-2022, 2022
Short summary

Cited articles

Abd-Elaal, E.-S., Mills, J. E., and Xing, M.: A review of transmission line systems under downburst wind loads, J. Wind. Eng. Ind. Aerod., 197, 503–513, https://doi.org/10.1016/j.jweia.2018.07.004, 2018. 
Alhassan, A. B., Zhang, X., Shen, H., Jian, G., Xu, H., and Hamza, K.: Investigation of Aerodynamic Stability of a Lightweight Dual-Arm Power Transmission Line Inspection Robot under the Influence of Wind, Math. Probl. Eng., 2019, 1–16, https://doi.org/10.1155/2019/2139462, 2019. 
Browne, N. W. and Adam, J. F.: The construction of lines using helicopters, Overhead Line Design and Construction: Theory and Practice, 1989, International Conference, 28 December 1998, 202–206, 1988. 
Buskey, G., Wyeth, G., and Roberts, J.: Autonomous helicopter hover using an artificial neural network, IEEE International Conference on Robotics & Automation, 21–26 May 2001, Seoul, Korea, 1635–1640, https://doi.org/10.1109/ROBOT.2001.932845, 2001. 
Chang, W., Yang, G., Yu, J., Liang, Z., and Chao, Z.: Development of a power line inspection robot with hybrid operation modes, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 24–28 September 2017, Vancouver, BC, Canada, 937–978, https://doi.org/10.1109/IROS.2017.8202263, 2017. 
Download
Short summary
Power line inspection not only wastes human and material resources, but also has a high-risk factor for manual inspection of power lines. Therefore, based on previous researchers, we designed a novel power line inspection robot. We also investigate walking stability of the robot on the line when encountering working conditions with crossing wind, since the power line is about 50–60 m from the ground and the inspection robots are greatly affected by wind.