Articles | Volume 12, issue 2
https://doi.org/10.5194/ms-12-1105-2021
https://doi.org/10.5194/ms-12-1105-2021
Research article
 | 
20 Dec 2021
Research article |  | 20 Dec 2021

Precise mathematical model for the ratchet tooth root bending stress

Chao Liu, Ning Ding, Jingsong Duan, Lili Zhou, Shanfu Cui, Shuna Jiang, and Aofei Li

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Bangchun, W.: Handbook of Mechanical Design, China Machine Press, Beijing, ISBN 978-7-111-29225-8, 2010. 
Cheng, L., Wenku, S., Zhiyong, C., Wei, H., Rusong, R., and Huailan, S.: Experiment on tooth root bending stress of driving axle hypoid gear of automobile, Journal of Jilin University (Engineering and Technology Edition), 47, 344–352, https://doi.org/10.13229/j.cnki.jdxbgxb201702002, 2017. 
Da, X. and Chongxian, J.: Structure and Design of Special Vehicle, Beijing Institute of Technology Press, Beijing, ISBN 7-81045-492-7, 1998. 
Datong, Q. and Lingyun, X.: Handbook of Mechanical Design, Chemical Industry Press, Beijing, ISBN 978-7-122-08712-6, 2011. 
Daxian, C.: Handbook of Mechanical Design, Chemical Industry Press, Beijing, ISBN 978-7-122-01408-5, 2008. 
Download
Short summary
In this paper, we use the folded section hypothesis to determinate the ratchet tooth root bending stress and provide a normal mathematical model to calculate it. This model has been proved by the finite element analysis method and the ratchet experiment. It is recommended that this model be used to predict the ratchet tooth root bending stress in the ratchet design process.