Articles | Volume 14, issue 2
https://doi.org/10.5194/ms-14-413-2023
https://doi.org/10.5194/ms-14-413-2023
Research article
 | 
09 Oct 2023
Research article |  | 09 Oct 2023

Motion planning and control strategy of a cable-driven body weight support gait training robot

Tao Qin, Qianpeng Wang, Wei Su, Chao Wei, Yanduo Zhang, and Jianwei Zhang

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Barbosa, A. M., Carvalho, J. C. M., and Gonçalves, R. S.: Cable-driven lower limb rehabilitation robot, J. Braz. Soc. Mech. Sci., 40, 1–11, https://doi.org/10.1007/s40430-018-1172-y, 2018. 
Chen, Q., Zi, B., Sun, Z., Li, Y., and Xu, Q.: Design and development of a new cable-driven parallel robot for waist rehabilitation, IEEE-ASME T. Mech., 24, 1497–1507, https://doi.org/10.1109/TMECH.2019.2917294, 2019. 
DeLisa, J. A.: Gait analysis in the science of rehabilitation, Scientific and Technical Publications Section, Washington D.C., https://api.semanticscholar.org/CorpusID:60320724 (last access: September 2023), 1998. 
Dong, M., Zhou, Y., Li, J., Rong, X., Fan, P., Zhou, X., and Kong, Y.: State of the art in parallel ankle rehabilitation robot: a systematic review, J. NeuroEng. Rehabil., 18, 1–15, https://doi.org/10.1186/s12984-021-00845-z, 2021. 
Ghrairi, K., Chaker, A., Salah, S., and Bennour, S.: Development of a cable-driven parallel robots for functional rehabilitation, design and modeling of mechanical systems Springer, Cham, 554–563, https://doi.org/10.1007/978-3-031-14615-2_62, 2023. 
Download
Short summary
A cable-driven body weight support gait training robot (C-BWSGTR) was designed to help provide patients with partial body weight support and a stable walking driving force to assist gait rehabilitation training. Overall configuration, kinematic modeling, and motion planning were carried out, and a position servo composite control strategy was designed. Simulation analysis and the prototype experiment verified that the designed control strategy met the requirements of the system.