Articles | Volume 12, issue 2
https://doi.org/10.5194/ms-12-863-2021
https://doi.org/10.5194/ms-12-863-2021
Research article
 | 
10 Sep 2021
Research article |  | 10 Sep 2021

The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters

Qing Yin, Jianli Zhao, Yong Liu, and Yisheng Zhang

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Barbieri, N. and Barbieri, R.: Dynamic analysis of Stockbridge damper, Advances in Acoustics and Vibration, 2012, 659398, https://doi.org/10.1155/2012/659398, 2012. 
Barbieri, N., Barbieri, R., da Silva, R. A., Mannala, M. J., and de Sant'Anna Vitor Barbieri, L.: Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper, Nonlinear Dynam., 86, 501–512, https://doi.org/10.1007/s11071-016-2903-1, 2016. 
Barbieri, N., Marchi, M. E., Mannala, M. J., Barbieri, R., Barbieri, L. de S. V., and de Sant'Anna Vitor Barbieri, G.: Nonlinear dynamic analysis of a Stockbridge damper, Can. J. Civil Eng., 46, 828–835, https://doi.org/10.1139/cjce-2018-0502, 2019. 
Barry, O., Oguamanam, D. C. D., and Lin, D. C.: Aeolian vibration of a single conductor with a Stockbridge damper, P. I. Mech. Eng. C-J. Mec., 227, 935–945, https://doi.org/10.1177/0954406212452064, 2012. 
Barry, O., Zu, J. W., and Oguamanam, D. C. D.: Nonlinear dynamics of Stockbridge dampers, J. Dyn. Syst-T. ASME, 137, 061017, https://doi.org/10.1115/1.4029526, 2015. 
Download
Short summary
The approximate calculation of a Stockbridge type damper's natural frequencies and its sensitivity were studied. The low-order frequency is highly sensitive to the cable's length, moderately sensitive to the damper's mass, and slightly sensitive to the eccentric distance and the damper's gyration radius. The high-order frequency is highly sensitive to the cable's length and the damper's gyration radius, moderately sensitive to the damper's mass, and slightly sensitive to the eccentric distance.