Articles | Volume 14, issue 2
https://doi.org/10.5194/ms-14-399-2023
https://doi.org/10.5194/ms-14-399-2023
Research article
 | 
06 Oct 2023
Research article |  | 06 Oct 2023

Optimal resource allocation method and fault-tolerant control for redundant robots

Yu Rong, Tianci Dou, and Xingchao Zhang

Related authors

Type synthesis of non-overconstrained and overconstrained two rotation and three translation (2R3T) parallel mechanisms with three branched chains
Yu Rong, Xingchao Zhang, Tianci Dou, and Hongbo Wang
Mech. Sci., 14, 567–577, https://doi.org/10.5194/ms-14-567-2023,https://doi.org/10.5194/ms-14-567-2023, 2023
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
Gravity compensation and output data decoupling of a novel six-dimensional force sensor
Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu
Mech. Sci., 15, 367–383, https://doi.org/10.5194/ms-15-367-2024,https://doi.org/10.5194/ms-15-367-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary

Cited articles

Abdi, H. and Nahavandi, S.: Well-conditioned configurations of fault-tolerant manipulators, Robot. Auton. Syst., 60, 242–251, https://doi.org/10.1016/j.robot.2011.10.008, 2012. 
Almarkhi, A. A. and MacIejewski, A. A.: Maximizing the Size of Self-Motion Manifolds to Improve Robot Fault Tolerance, IEEE Robotics and Automation Letters, 4, 2653–2660, https://doi.org/10.1109/LRA.2019.2913994, 2019. 
Almarkhi, A. A., MacIejewski, A. A., and Chong, E. K. P.: An Algorithm to Design Redundant Manipulators of Optimally Fault-Tolerant Kinematic Structure, IEEE Robotics and Automation Letters, 5, 4727–4734, https://doi.org/10.1109/LRA.2020.3003282, 2020. 
Ben-Gharbia, K. M., MacIejewski, A. A., and Roberts, R. G.: A kinematic analysis and evaluation of planar robots designed from optimally fault-tolerant Jacobians, IEEE T. Robot., 30, 516–524, https://doi.org/10.1109/TRO.2013.2291615, 2014. 
Cao, Y.: Research on Fault-Tolerant Control of Seven-axis Redundant Manipulator, Southeast University, https://doi.org/10.27014/d.cnki.gdnau.2019.000935, 2019. 
Download
Short summary
Resource coordination and allocation strategies are proposed to reduce the probability of failure by aiming at the problem that the robot cannot continue to work after joint failure. Taking the planar 4R redundant robot as an example, the algorithm control is compared. Based on reasonable modeling and physical verification, the results show that the method of optimal resource coordination and allocation is effective.