Articles | Volume 14, issue 1
https://doi.org/10.5194/ms-14-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ms-14-159-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design of a soft bionic elbow exoskeleton based on shape memory alloy spring actuators
Qiaolian Xie
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
Qiaoling Meng
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
Wenwei Yu
Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
Rongna Xu
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Zhiyu Wu
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Xiaoming Wang
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Hongliu Yu
CORRESPONDING AUTHOR
Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
Related authors
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021, https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Short summary
This paper proposes a new 13 degrees of freedom equivalent kinematic model for the human upper limb and fully considers the movement characteristics of human upper limbs in anatomy. The proposed model can be utilized to analyze the human upper limb workspace and joint motions. Furthermore, the model can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.
Qiaoling Meng, Yiming Yue, Sujiao Li, and Hongliu Yu
Mech. Sci., 13, 675–685, https://doi.org/10.5194/ms-13-675-2022, https://doi.org/10.5194/ms-13-675-2022, 2022
Short summary
Short summary
This paper proposes a novel EMG-based motion compensation controller in active training control to improve patients’ active participation. After proposing an upper limb rehabilitation robot and doing the path plan, the EMG compensation experiments and the active training control experiment are done to prove that the method can control the robot in providing auxiliary force according to patients’ motion intents. The robot can guide the patients in implementing reference tasks in active training.
Qiaoling Meng, Mingpeng Jiang, Zongqi Jiao, and Hongliu Yu
Mech. Sci., 13, 1–13, https://doi.org/10.5194/ms-13-1-2022, https://doi.org/10.5194/ms-13-1-2022, 2022
Short summary
Short summary
This paper proposes a bionic, multi-posture wheelchair, based on the proposed human–wheelchair coupling model, according to the movement characteristics and requirements. The two key factors in designing the multi-posture wheelchair, the consistency of the motion center and the compensation of the shifting center of gravity, are analyzed in this paper. The novel multi-posture wheelchair can implement the sit-to-lie and sit-to-stand transformations with a maximum slipping distance of 10.5 mm.
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021, https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Short summary
This paper proposes a new 13 degrees of freedom equivalent kinematic model for the human upper limb and fully considers the movement characteristics of human upper limbs in anatomy. The proposed model can be utilized to analyze the human upper limb workspace and joint motions. Furthermore, the model can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.
Qiaoling Meng, Zongqi Jiao, Hongliu Yu, and Weisheng Zhang
Mech. Sci., 12, 639–648, https://doi.org/10.5194/ms-12-639-2021, https://doi.org/10.5194/ms-12-639-2021, 2021
Short summary
Short summary
This paper proposes a novel, 4 degrees of freedom, end-effector-based upper limb rehabilitation robot with space training. The robot can assist the human upper limb in performing rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Different from the desktop-type end-effector-based robot, the proposed robot can provide a wide range of shoulder flexion/extension training and cover the range of movement of the human upper limb.
Xiaoming Wang, Qiaoling Meng, Zhewen Zhang, Jinyue Sun, Jie Yang, and Hongliu Yu
Mech. Sci., 11, 425–436, https://doi.org/10.5194/ms-11-425-2020, https://doi.org/10.5194/ms-11-425-2020, 2020
Related subject area
Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Dimensional synthesis of a spherical linkage crank slider mechanism for motion generation using an optimization algorithm
A versatile end effector for grabbing and spreading of flaky deformable object manipulation
Design and kinematics of a lightweight cruciform continuum robot
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Dynamic modeling and vibration characteristics analysis of parallel antenna
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Surface modification and tooth contact analysis of variable hyperbolic circular-arc-tooth-trace cylindrical gears
Analysis of the coaxiality–geometric hysteresis model of a rotate vector reducer based on Ansys Adams
Dynamic modeling and experiment of hind leg swimming of beaver-like underwater robot
Spring efficiency assessment and efficient use of spring methods of statically balanced planar serial manipulators with revolute joints only
Structural optimization of a pipe-climbing robot based on ANSYS
Design and analysis of a hollow-ring permanent magnet brake for robot joints
A novel compound topological invariant for isomorphism detection of planar kinematic chains
Varying rate adaptive hybrid position–impedance control for robot-assisted ultrasonic examination system
Design and kinematic analysis of a multifold rib modular deployable antenna mechanism
Design of a transrectal ultrasonic guided prostate low dose rate brachytherapy robot
A passive upper-limb exoskeleton for industrial application based on pneumatic artificial muscles
Innovative design method for planar mechanism configuration based on component similarity discrimination
Design and test of a positioning system for a greenhouse electric micro-tiller based on ultra-wideband
A novel flying–walking power line inspection robot and stability analysis hanging on the line under wind loads
Kinematic and dynamic analysis of an omnidirectional mobile platform driven by a spherical wheel
Kinematic and dynamic accuracy of spherical mechanisms
Design and analysis of a six-wheeled companion robot with mechanical obstacle-overcoming adaptivity
Precise mathematical model for the ratchet tooth root bending stress
Swing control for a three-link brachiation robot based on sliding-mode control on irregularly distributed bars
Analysis and compensation control of passive rotation on a 6-DOF electrically driven Stewart platform
Force analysis of minimal self-adaptive fingers using variations of four-bar linkages
Kinematics decoupling analysis of a hyper-redundant manipulator driven by cables
Research on a cascade model synthesis with the use of classical and non-classical methods in the context of new piezoelectric stack applications
A toy-inspired kirigami pattern and its kinematic performance by applying mechanisms and machine theory
Analytical solution to contact characteristics for a variable hyperbolic circular-arc-tooth-trace cylindrical gear
The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters
Dynamic modeling and vibration analysis of a cracked 3K-II planetary gear set for fault detection
Kinematics analysis of a four-legged heavy-duty robot with a force–position hybrid control servo actuator in a parallel-executed cylinder system
Semi-numerical analysis of a two-stage series composite planetary transmission considering incremental harmonic balance and multi-scale perturbation methods
An innovative equivalent kinematic model of the human upper limb to improve the trajectory planning of exoskeleton rehabilitation robots
Design and evaluation of a novel upper limb rehabilitation robot with space training based on an end effector
Vibroacoustic characteristics analysis of a planetary gear reducer considering the exterior housing structure
Programming piston displacements for constant flow rate piston pumps with trigonometric transition functions
Center-point steering analysis of tracked omni-vehicles based on skid conditions
Performance analysis of an electro-hydrostatic actuator with high-pressure load sensing based on fuzzy PID
Lagrange-method-based dynamic analysis of multi-stage planetary roller screw mechanism
Design and performance analysis of wave linear generator with parallel mechanism
A novel algorithm by combining nonlinear workspace partition with neural networks for solving the inverse kinematics problem of redundant manipulators
A real-time inverse kinematics solution based on joint perturbation for redundant manipulators
A new method for isomorphism identification of planetary gear trains
Analysis and control of state jump in space deployable structures under alternating temperature loads
Design and analysis of a novel deployable hexagonal prism module for parabolic cylinder antenna
Wei Zhang, Zhen Liu, Wenrui Liu, Jianwei Sun, and He Lu
Mech. Sci., 14, 125–142, https://doi.org/10.5194/ms-14-125-2023, https://doi.org/10.5194/ms-14-125-2023, 2023
Short summary
Short summary
A new method to solve the motion generation problem of a spherical four-bar crank slider rigid-body guidance mechanism is introduced. According to the amplitude and phase of the position output and direction output of the mechanism, the method of establishing the mechanism output characteristic database is given. Then the solution method of size parameters is given. According to the database and solution method, the motion generation is realized.
Yuan Huan, Gongchang Ren, Xiangyu Su, and Weizhi Tian
Mech. Sci., 14, 111–123, https://doi.org/10.5194/ms-14-111-2023, https://doi.org/10.5194/ms-14-111-2023, 2023
Short summary
Short summary
A reconfigurable multi-link mechanism is proposed, and based on the multi-link mechanism and the roller fingertip structure, an end effector is designed to manipulate geometric soft fabrics. The working principle of the reconfigurable multi-link mechanism, the structure and grasping mode of the end effector are introduced in detail, and the kinematics analysis and simulation of the end effector are carried out.
Pan Zhou, Jiantao Yao, Hongyu Zhang, Xuanhao Zhang, Shuaiqi kong, and Kunming Zhu
Mech. Sci., 14, 99–109, https://doi.org/10.5194/ms-14-99-2023, https://doi.org/10.5194/ms-14-99-2023, 2023
Short summary
Short summary
Lightweight and stable continuum robot design is a challenge. We propose a 65 g continuum robot formed using cruciform-arranged elastic sheets. It has low coupling, better bending characteristics in the deformation direction, and a large load capacity in the non-deformation direction, providing a new configuration for lightweight and dexterous continuum robots. Its kinematics model accuracy is experimentally verified. Nucleic acid detection demonstration proves its dexterity and adaptability.
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32, https://doi.org/10.5194/ms-14-19-2023, https://doi.org/10.5194/ms-14-19-2023, 2023
Short summary
Short summary
The haptic interactive robot based on a cable-driven parallel mechanism studied in this paper is mainly used for interactive training between an astronaut and a virtual environment. This haptic interactive robot can accurately simulate the motion and mechanical characteristics of objects in a microgravity environment and can safely interact with astronauts.
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13, https://doi.org/10.5194/ms-14-1-2023, https://doi.org/10.5194/ms-14-1-2023, 2023
Short summary
Short summary
A new type of wheel–leg deformation mechanism, based on an electromagnetic clutch and gear rack transmission mechanism, is designed for moving on complex terrain. The walking model is established to study the kinematics characteristics and obstacle-surmounting performance of the mechanism. The stability cone method is used to evaluate the rollover stability and anti-interference ability in order to ensure the normal operation of the mechanism.
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022, https://doi.org/10.5194/ms-13-1019-2022, 2022
Short summary
Short summary
The closed-form dynamics equation of the 1.8 m aperture parallel antenna is established. The relationship between the mechanism's natural frequency, displacement response, and resonance frequency is obtained. Based on the dynamic model, the closed-loop motion control strategy of the parallel antenna mechanism is established. The tracking error of the pitch and azimuth motion of the parallel antenna in the workspace is within ±0.05°.
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990, https://doi.org/10.5194/ms-13-979-2022, https://doi.org/10.5194/ms-13-979-2022, 2022
Short summary
Short summary
Aiming at the potential safety problems caused by the looseness of bucket teeth of the electric shovel, we propose an improved YOLOX algorithm. After introducing the dilated CBAM, the deep separable convolution, and model compression, the mAP is decreased by 0.33 %, the detection speed is increased by 11.9 fps, and the model volume is reduced to 29.46 % of the YOLOX model. It provides a theoretical basis and technical support for the development of intelligent mines and mining intelligence.
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978, https://doi.org/10.5194/ms-13-961-2022, https://doi.org/10.5194/ms-13-961-2022, 2022
Short summary
Short summary
In order to store grain in large warehouses, a process is required that will prevent the effects of mildew and heat. Real-time monitoring of the grain status is needed. Using the information obtained from the monitoring system, corresponding measures were taken for the heating and mildew points in the grain pile. We proposed a drill which is a granary grain condition detector. It can be equipped with temperature, CO2, and humidity sensors and gather information by entering the grain pile.
Yongping Liu and Dengqiu Ma
Mech. Sci., 13, 909–920, https://doi.org/10.5194/ms-13-909-2022, https://doi.org/10.5194/ms-13-909-2022, 2022
Short summary
Short summary
Firstly, the tooth surface modification method based on the parabolic forming blade and cutter inclination was proposed. Next, the modified tooth surface equation was deduced and the 3D reconstruction of the modified tooth surface is realized. Then, the influence of modification parameters on tooth surface curvature characteristics was analysed. Finally, the tooth contact analysis model was established to discuss the influence of modification parameters on the elliptical contact area.
Yongming Liu, Lei Fu, Zhuanzhe Zhao, Qiang Ma, Yujian Rui, and Zhen Zhang
Mech. Sci., 13, 855–866, https://doi.org/10.5194/ms-13-855-2022, https://doi.org/10.5194/ms-13-855-2022, 2022
Short summary
Short summary
The coaxiality–geometric hysteresis model of the RV reducer transmission system is established, and the model is simulated and analyzed with Adams software. The results show that coaxiality is one of the main error factors affecting hysteresis. This research can provide a theoretical basis and reference materials for the measurement and design of RV reducer hysteresis, as well as the design of the RV reducer performance high-precision detection device and its adjustment mechanism.
Gang Chen, Zhenyu Wang, Jiajun Tu, and Donghai Wang
Mech. Sci., 13, 831–842, https://doi.org/10.5194/ms-13-831-2022, https://doi.org/10.5194/ms-13-831-2022, 2022
Short summary
Short summary
In the research and development process of underwater motion control of the beaver-like robot, the hind leg and tail are the main actuators. In order to estimate the driving force of the robot autonomously during underwater movement, we propose this model, which can quickly and easily infer the force of the hind leg on the body. The correctness of this model is verified by experiments and simulations.
Chia-Wei Juang, Chi-Shiun Jhuang, and Dar-Zen Chen
Mech. Sci., 13, 817–830, https://doi.org/10.5194/ms-13-817-2022, https://doi.org/10.5194/ms-13-817-2022, 2022
Short summary
Short summary
This paper proposes a spring efficiency assessment and the efficient use of springs methods for a static spring-balanced manipulator. Gravity is balanced by springs; however, it also contains counter-effects between springs. Conceptually, with fewer counter-effects between springs, there is less burden on the spring system, which means that the springs are used more efficiently. Through adjustment of the springs' attachment and parameters, a method to use springs efficiently is developed.
Yi Zheng, Minghua Liu, Baoshun Li, Guoqing Ma, and Maohua Xiao
Mech. Sci., 13, 725–733, https://doi.org/10.5194/ms-13-725-2022, https://doi.org/10.5194/ms-13-725-2022, 2022
Short summary
Short summary
In order to improve the structural performance of the out-of-pipe pipe-climbing robot, the out-of-pipe pipe-climbing robot is optimized. The structure and size of the robot was optimized. Static and modal analyses were then performed on key robot components and ANSYS was used for topology optimization. It was found the weight of the optimized frame and clamping arm were respectively reduced by 24 % and 20 %, and the maximum stress was respectively reduced by 46 % and 20 %.
Ruoyu Tan, Jieji Zheng, Bin Yu, Baoyu Li, Dapeng Fan, and Xin Xie
Mech. Sci., 13, 687–699, https://doi.org/10.5194/ms-13-687-2022, https://doi.org/10.5194/ms-13-687-2022, 2022
Short summary
Short summary
A novel hollow-ring permanent magnet brake integrated in robot joints is proposed, which allows the brake to require much less axial space and provides more than 1.5 times braking torque for the same volume as the conventional electromagnetic-spring friction brake. A coupled dynamics model of the proposed brake is developed from machine-electric-magnetic aspects. The 3D model of the brake is simulated through finite-element software. The theoretical models are verified through experiments.
Yingxian Wang, Rongjiang Cui, and Jinxi Chen
Mech. Sci., 13, 585–591, https://doi.org/10.5194/ms-13-585-2022, https://doi.org/10.5194/ms-13-585-2022, 2022
Short summary
Short summary
This paper use the topological characteristic constants for isomorphism identification, such as the power value sequence (PVS), least distance matrix sequence (LDMS), and loop number (LN). The fourth PVS, the LDMS, and the LN are compared and arranged in descending order, forming a strong complementary chain. Our results show that solving the problem of the isomorphism identification of the kinematic chain (KC) based on graph theory definition has no advantage in efficiency.
Zhanxin Xie and Zheng Yan
Mech. Sci., 13, 559–575, https://doi.org/10.5194/ms-13-559-2022, https://doi.org/10.5194/ms-13-559-2022, 2022
Short summary
Short summary
Robotic ultrasonic scanning needs to apply an appropriate force for a long time during the acquisition process. Excessive contact force may lead to deformation and even hurt the patient, while insufficient force would lead to poor image quality. We proposed a varying rate hybrid position–impedance control strategy, which can partly play the role of an ultrasound sonographer and serve as a medical assistant to reduce their workload.
Dake Tian, Haiming Gao, Lu Jin, Rongqiang Liu, Yu Zhang, Chuang Shi, and Jiewei Xu
Mech. Sci., 13, 519–533, https://doi.org/10.5194/ms-13-519-2022, https://doi.org/10.5194/ms-13-519-2022, 2022
Short summary
Short summary
Space deployable antenna is a new type of space structure, and one of the key payloads of spacecraft, which is widely used in mobile communication, navigation and remote sensing, deep space exploration, military reconnaissance, and other fields of science and technology and national defense. Aiming at the urgent need for the development of space deployable antenna with large aperture and a high storage rate, a new configuration of a multifold rib modular deployable antenna mechanism is proposed.
Xuesong Dai, Yongde Zhang, Jingang Jiang, Bing Li, and Sihao Zuo
Mech. Sci., 13, 399–409, https://doi.org/10.5194/ms-13-399-2022, https://doi.org/10.5194/ms-13-399-2022, 2022
Short summary
Short summary
Transrectal prostate brachytherapy (BT) can effectively treat prostate cancer. During the operation, doctors need to hold the ultrasound probe for repeated adjustments, which makes it difficult to ensure the efficiency, accuracy, and safety of the operation. We designed an 11 DOF (degrees of freedom) active and passive transrectal BT robot based on the analysis of the transrectal prostate BT process.
Maria Paterna, Stefania Magnetti Gisolo, Carlo De Benedictis, Giovanni Gerardo Muscolo, and Carlo Ferraresi
Mech. Sci., 13, 387–398, https://doi.org/10.5194/ms-13-387-2022, https://doi.org/10.5194/ms-13-387-2022, 2022
Short summary
Short summary
We present a novel exoskeleton based on deformable pneumatic actuators, known as McKibben muscles or artificial muscles. The aim of this system is to support a worker during overhead tasks, in which they need to lift the arms and hold that position for a long time. Simulations have been performed, starting from a mathematical model of the exoskeleton and of the artificial muscle. A first architecture of the complete device is also presented.
Weiwei Hong, Jinxi Chen, Bingliang Ye, and Rongjiang Cui
Mech. Sci., 13, 353–359, https://doi.org/10.5194/ms-13-353-2022, https://doi.org/10.5194/ms-13-353-2022, 2022
Short summary
Short summary
To obtain all mechanical schemes, scholars in this field have proposed an innovative design method using kinematic chain configuration synthesis. However, the existing innovative design method easily produces redundant design schemes. We analyze the similar component discrimination method for mechanisms from the perspective of graph theory and apply it to the specialization of topological graphs to solve the problem of redundant design schemes.
Ying Lin, Qian Chen, Haijun Zhang, Ye Ma, Wenlian Zeng, Guojun Wei, Hongxiang Wang, and Maohua Xiao
Mech. Sci., 13, 225–237, https://doi.org/10.5194/ms-13-225-2022, https://doi.org/10.5194/ms-13-225-2022, 2022
Short summary
Short summary
A positioning system for ultra-wideband (UWB) electric micro-tillers suitable for complex greenhouse environments was designed as the basis for realising unmanned micro-tillers to address the problem of frequent safety accidents of existing micro-tillers. The positioning system of the greenhouse electric micro-tiller designed in this paper demonstrates a stable performance and positioning accuracy to meet the needs of greenhouse rotary tillage operations.
Xinyan Qin, Bo Jia, Jin Lei, Jie Zhang, Huidong Li, Bo Li, and Zhaojun Li
Mech. Sci., 13, 257–273, https://doi.org/10.5194/ms-13-257-2022, https://doi.org/10.5194/ms-13-257-2022, 2022
Short summary
Short summary
Power line inspection not only wastes human and material resources, but also has a high-risk factor for manual inspection of power lines. Therefore, based on previous researchers, we designed a novel power line inspection robot. We also investigate walking stability of the robot on the line when encountering working conditions with crossing wind, since the power line is about 50–60 m from the ground and the inspection robots are greatly affected by wind.
Luis Daniel Filomeno Amador and Eduardo Castillo Castañeda
Mech. Sci., 13, 31–39, https://doi.org/10.5194/ms-13-31-2022, https://doi.org/10.5194/ms-13-31-2022, 2022
Short summary
Short summary
In mobile robot development, the designer focuses on the novelty of the final element, leaving out the mobile platform evolution; the chief problem with wheeled mobile robots is the restricted movement in the workspace due to the necessity for the system's reorientation. Our goal is to realize a wheeled mobile robotic system that can generate an omnidirectional displacement without the need to redirect the wheels, thus guaranteeing continuous operation.
Dinh Tung Vo, Sergey Kheylo, and Van Quoc Nguyen
Mech. Sci., 13, 23–30, https://doi.org/10.5194/ms-13-23-2022, https://doi.org/10.5194/ms-13-23-2022, 2022
Short summary
Short summary
The proposed approach to assessing the kinematic accuracy allows one to determine the deviations in the output link using the theory of accuracy. This allows one to determine the deviations in the output link at any point in the working area and propose constructive solutions for its compensation. This approach to determining the positioning error makes it possible to calculate the deviations in the output link for similar mechanisms of a parallel structure.
Zhen Song, Zirong Luo, Guowu Wei, and Jianzhong Shang
Mech. Sci., 12, 1115–1136, https://doi.org/10.5194/ms-12-1115-2021, https://doi.org/10.5194/ms-12-1115-2021, 2021
Short summary
Short summary
It is more efficient and safe to use a sub robot to replace the mother robot to perform space exploration tasks full of challenges. A novel three-rocker-arm six-wheeled robot with adaptive obstacle-crossing capability was designed to form a sub-parent exploration system with a large robot and to perform exploration tasks. A prototype of the robot is developed, and the experiment results show that the robot can maintain stability in rugged terrain and has excellent ability to cross obstacles.
Chao Liu, Ning Ding, Jingsong Duan, Lili Zhou, Shanfu Cui, Shuna Jiang, and Aofei Li
Mech. Sci., 12, 1105–1113, https://doi.org/10.5194/ms-12-1105-2021, https://doi.org/10.5194/ms-12-1105-2021, 2021
Short summary
Short summary
In this paper, we use the folded section hypothesis to determinate the ratchet tooth root bending stress and provide a normal mathematical model to calculate it. This model has been proved by the finite element analysis method and the ratchet experiment. It is recommended that this model be used to predict the ratchet tooth root bending stress in the ratchet design process.
Zhiguo Lu, Guoshuai Liu, Haibin Zhao, Ruchao Wang, and Chong Liu
Mech. Sci., 12, 1073–1081, https://doi.org/10.5194/ms-12-1073-2021, https://doi.org/10.5194/ms-12-1073-2021, 2021
Short summary
Short summary
This paper designs a type of bionic-gibbon robot with three links and two grippers. We apply the sliding-mode control to the swing motion of the robot. The bionic-gibbon robot can complete continuous brachiation motion on the irregularly distributed bars. Besides, compared with the two-link structure, the three-link structure introduced in this paper improves the swing efficiency and increases the swing height of the robot.
Qitao Huang, Peng Wang, Bowen Li, and Qingjun Yang
Mech. Sci., 12, 1027–1036, https://doi.org/10.5194/ms-12-1027-2021, https://doi.org/10.5194/ms-12-1027-2021, 2021
Short summary
Short summary
The electrically driven Stewart platform (EDSP) is used widely. However, the passive rotation (PR) on driven branch chains can generate posture error on the end effector. Compensation control strategy is designed to avoid effects of PR on posture accuracy of the 6-DOF (degrees of freedom) EDSP based on calculation and analysis. The validity of analysis and the effectiveness of the compensation method used to improving posture accuracy are proven by simulation and experiments on a 6-DOF EDSP.
Fadi Nassar and Lionel Birglen
Mech. Sci., 12, 1037–1049, https://doi.org/10.5194/ms-12-1037-2021, https://doi.org/10.5194/ms-12-1037-2021, 2021
Short summary
Short summary
This paper presents the force analysis and optimization of four versions of self-adaptive robotic fingers based on the simplest closed-loop 1 degree-of-freedom mechanism possible, namely the four-bar linkage. Two of these versions include prismatic joints. It was concluded that simpler designs in adaptive fingers do not necessarily mean weaker performances since the results are at least comparable with other designs with more degrees of freedom.
Lei Zhang, Guangyao Ouyang, and Zhaocai Du
Mech. Sci., 12, 1017–1026, https://doi.org/10.5194/ms-12-1017-2021, https://doi.org/10.5194/ms-12-1017-2021, 2021
Short summary
Short summary
To solve the kinematics mapping problem for the joint space and the drive space of a hyper-redundant manipulator based on flexible cable actuation, which is the key for hyper-redundant manipulators to move strictly according to trajectory planning and avoid obstacles, a decoupling method for kinematics analyses of the flexible cable actuation space and the joint rotation space was proposed.
Jacek Harazin and Andrzej Wróbel
Mech. Sci., 12, 959–969, https://doi.org/10.5194/ms-12-959-2021, https://doi.org/10.5194/ms-12-959-2021, 2021
Short summary
Short summary
This article contains new propositions for modelling piezoelectric stack models by using existing classical and non-classical methods with the aim of improving piezoelectric stack capabilities. Polynomial chain fractioning is used to obtain a mechanical model with a cascade structure. To verify model output frequencies and amplitudes, edge graphs and structural numbers are used. With the help of Kelvin–Voigt, Mason and Maxwell slip models, an electromechanical model solutions are proposed.
Weiwei Lin, Kunjing Chen, Yuan Gao, Aihua Chen, Fufu Yang, and Huijuan Feng
Mech. Sci., 12, 933–943, https://doi.org/10.5194/ms-12-933-2021, https://doi.org/10.5194/ms-12-933-2021, 2021
Short summary
Short summary
The problem of inverse folding, determining the distribution of creases according to the desired shape, requires luck and artist inspiration, and it is a very complicated process. Here, we try to solve an inverse folding problem about a folding toy and get some kirigami patterns. It opens up a new way to solve the problem and can also help students understand the theory of mechanisms and machines.
Rui Guo, Yongqiao Wei, Yongping Liu, Dawei Li, Dong Yang, and Gang Zhao
Mech. Sci., 12, 923–932, https://doi.org/10.5194/ms-12-923-2021, https://doi.org/10.5194/ms-12-923-2021, 2021
Short summary
Short summary
The variable hyperbolic circular-arc-tooth-trace (VH-CATT) cylindrical gear is a new type of gear. In order to research the contact characteristics of the VH-CATT cylindrical gear, tooth surface mathematical models of this kind of gear pair are derived based on the forming principle of the rotating double-edged cutting method with great cutter head in this regard.
Qing Yin, Jianli Zhao, Yong Liu, and Yisheng Zhang
Mech. Sci., 12, 863–873, https://doi.org/10.5194/ms-12-863-2021, https://doi.org/10.5194/ms-12-863-2021, 2021
Short summary
Short summary
The approximate calculation of a Stockbridge type damper's natural frequencies and its sensitivity were studied. The low-order frequency is highly sensitive to the cable's length, moderately sensitive to the damper's mass, and slightly sensitive to the eccentric distance and the damper's gyration radius. The high-order frequency is highly sensitive to the cable's length and the damper's gyration radius, moderately sensitive to the damper's mass, and slightly sensitive to the eccentric distance.
Meng Sang, Kang Huang, Yangshou Xiong, Guangzhi Han, and Zhenbang Cheng
Mech. Sci., 12, 847–861, https://doi.org/10.5194/ms-12-847-2021, https://doi.org/10.5194/ms-12-847-2021, 2021
Short summary
Short summary
Few pieces of literature could be found on vibration investigations of the 3K planetary gear set, a basic planetary drive structure with a more compact structure and wider transmission ratio range than the 2K-H. In this paper, the features of casing vibration and output torsional vibration are analyzed by establishing a dynamics model of a 3K-II gearbox. The advantages and disadvantages of these two vibration signals as a basis for 3K planetary gear system fault diagnosis are also compared.
Guiying Wang, Xigui Wang, Yongmei Wang, and Baixue Fu
Mech. Sci., 12, 735–749, https://doi.org/10.5194/ms-12-735-2021, https://doi.org/10.5194/ms-12-735-2021, 2021
Short summary
Short summary
An electrohydraulic servo four-legged heavy-duty (FLHD) robot has been designed and developed. An integration layout cylinder design scheme for a non-lightweight hydraulic servo four-legged robot with high loads and torque of the hip joint is proposed, and the mathematical element analysis model for a parallel-executed cylinder (PEC) system is derived. A design idea of a force–position hybrid control scheme is determined for the PEC.
Xigui Wang, Siyuan An, Yongmei Wang, Jiafu Ruan, and Baixue Fu
Mech. Sci., 12, 701–714, https://doi.org/10.5194/ms-12-701-2021, https://doi.org/10.5194/ms-12-701-2021, 2021
Short summary
Short summary
A comparison between the results obtained by the MsP method and the numerical integration method proves that the former is ideal and credible in most regions. The effects of the time-varying parameters and the nonlinear deenthing caused by the gear teeth clearance on the amplitude–frequency characteristics of TsSCS components are studied. This is a part of research on transmission gears' thermal deformation for application in warship power rear drive systems.
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021, https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Short summary
This paper proposes a new 13 degrees of freedom equivalent kinematic model for the human upper limb and fully considers the movement characteristics of human upper limbs in anatomy. The proposed model can be utilized to analyze the human upper limb workspace and joint motions. Furthermore, the model can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.
Qiaoling Meng, Zongqi Jiao, Hongliu Yu, and Weisheng Zhang
Mech. Sci., 12, 639–648, https://doi.org/10.5194/ms-12-639-2021, https://doi.org/10.5194/ms-12-639-2021, 2021
Short summary
Short summary
This paper proposes a novel, 4 degrees of freedom, end-effector-based upper limb rehabilitation robot with space training. The robot can assist the human upper limb in performing rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Different from the desktop-type end-effector-based robot, the proposed robot can provide a wide range of shoulder flexion/extension training and cover the range of movement of the human upper limb.
Lihong Jin, Junpeng Shao, Xigui Wang, Yongmei Wang, and Baixue Fu
Mech. Sci., 12, 539–557, https://doi.org/10.5194/ms-12-539-2021, https://doi.org/10.5194/ms-12-539-2021, 2021
Short summary
Short summary
This study performs an analytical study of the modal and natural frequencies and the vibration types of each order of the gearbox housing structure of a planetary gear reducer (PGR). An optimal housing structure for a PGR with lower acoustic vibrations is designed, and a composite housing structure with damping vibration attenuation and acoustic absorption is proposed. The radiation acoustic characteristics without acoustic protection and damping materials are analyzed.
Zhongxu Tian and Xingxing Lin
Mech. Sci., 12, 559–571, https://doi.org/10.5194/ms-12-559-2021, https://doi.org/10.5194/ms-12-559-2021, 2021
Short summary
Short summary
An analytical method for programming piston displacements for constant flow rate piston pumps is presented. The results show that, with the given transition functions, cam profiles can be designed analytically with parameterized forms, and the maximum accelerations of the pistons are determined by the width of the transition domain and the rotational velocities of the cams, which will affect contact forces between cams and followers.
Yuan Fang, Yunan Zhang, Yinghui Shang, Tao Huang, and Mengfei Yan
Mech. Sci., 12, 511–527, https://doi.org/10.5194/ms-12-511-2021, https://doi.org/10.5194/ms-12-511-2021, 2021
Short summary
Short summary
The center-point steering theory of a traditional tracked vehicle cannot be directly applied to a tracked omni-robot. In this study, for the three typical layout types, rectangular, hybrid, and centripetal, the steady center-point steering motion of a tracked omni-vehicle under skid conditions is analyzed and a correction model is investigated. The correction model can correct the angular velocity and time of the vehicle, as well as give the relationship between the design parameters.
Hong Zhang, Lan Ding, Wentao Zhang, and Chenchen Li
Mech. Sci., 12, 529–537, https://doi.org/10.5194/ms-12-529-2021, https://doi.org/10.5194/ms-12-529-2021, 2021
Xin Li, Geng Liu, Xiaojun Fu, and Shangjun Ma
Mech. Sci., 12, 471–478, https://doi.org/10.5194/ms-12-471-2021, https://doi.org/10.5194/ms-12-471-2021, 2021
Tao Yao, Yulong Wang, Zhihua Wang, and Can Qin
Mech. Sci., 12, 405–417, https://doi.org/10.5194/ms-12-405-2021, https://doi.org/10.5194/ms-12-405-2021, 2021
Short summary
Short summary
A wave energy converter has been investigated, which can convert the absorbed wave energy into electrical energy. Through electromagnetic numerical simulations, the influences of linear generator parameters such as magnetization mode, air gap, and yoke shape on electromagnetic performance were evaluated. Numerical results show axial magnetization and Halbach magnet array can increase magnetic flux intensity more than the radial mode. The conversion rate of wave energy is derived.
Hui Dong, Chen Li, Wentao Wu, Ligang Yao, and Hao Sun
Mech. Sci., 12, 259–267, https://doi.org/10.5194/ms-12-259-2021, https://doi.org/10.5194/ms-12-259-2021, 2021
Qinhuan Xu and Qiang Zhan
Mech. Sci., 12, 221–235, https://doi.org/10.5194/ms-12-221-2021, https://doi.org/10.5194/ms-12-221-2021, 2021
Wei Sun, Ronghe Li, Jianyi Kong, and Anming Li
Mech. Sci., 12, 193–202, https://doi.org/10.5194/ms-12-193-2021, https://doi.org/10.5194/ms-12-193-2021, 2021
Congcong Chen, Tuanjie Li, Yaqiong Tang, and Zuowei Wang
Mech. Sci., 12, 59–67, https://doi.org/10.5194/ms-12-59-2021, https://doi.org/10.5194/ms-12-59-2021, 2021
Xiaofei Ma, Yang Li, Tuanjie Li, Hangjia Dong, Dawei Wang, and Juntao Zhu
Mech. Sci., 12, 9–18, https://doi.org/10.5194/ms-12-9-2021, https://doi.org/10.5194/ms-12-9-2021, 2021
Cited articles
Ang, B. W. K. and Yeow, C. H.: Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion, IEEE Robotics and Automation Letters, 5, 3731–3736, https://doi.org/10.1109/LRA.2020.2980990, 2020.
Bertomeu-Motos, A., Blanco, A., Badesa, F. J., Barios, J. A., Zollo, L., and Garcia-Aracil, N.: Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices, J. Neuroeng. Rehabil., 15, 1–11, https://doi.org/10.1186/s12984-018-0348-0, 2018.
Copaci, D., Blanco, D., and Moreno, L. E.: Flexible shape-memory alloy-based actuator: Mechanical design optimization according to application, Actuators, 8, 63, https://doi.org/10.3390/act8030063, 2019.
Copaci, D.-S., Blanco, D., Martin-Clemente, A., and Moreno, L.: Flexible shape memory alloy actuators for soft robotics: Modelling and control, Int. J. Adv. Robot. Syst., 17, 1729881419886747, https://doi.org/10.1177/1729881419886747, 2020.
Dinh, B. K., Xiloyannis, M., Cappello, L., Antuvan, C. W., Yen, S.-C., and Masia, L.: Adaptive backlash compensation in upper limb soft wearable exoskeletons, Robot. Auton. Syst., 92, 173–186, https://doi.org/10.1016/j.robot.2017.03.012, 2017.
Hadi, A., Yousefi-Koma, A., Moghaddam, M. M., Elahinia, M., and Ghazavi, A.: Developing a novel SMA-actuated robotic module, Sensor. Actuat. A-Phys., 162, 72–81, https://doi.org/10.1016/j.sna.2010.06.014, 2010.
Jeong, J., Yasir, I. B., Han, J., Park, C. H., Bok, S.-K., and Kyung, K.-U.: Design of shape memory alloy-based soft wearable robot for assisting wrist motion, Appl. Sci.-Basel, 9, 4025, https://doi.org/10.3390/app9194025, 2019.
Jeong, J., Hyeon, K., Han, J., Park, C. H., Ahn, S.-Y., Bok, S.-K., and Kyung, K.-U.: Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle, IEEE-ASME T. Mech., 27, 1046–1058, https://doi.org/10.1109/TMECH.2021.3078472, 2021.
Jeong, J., Hyeon, K., Jang, S. Y., Chung, C. Y., Hussain, S., Ahn, S. Y., Bok, S. K., and Kyung, K. U.: Soft Wearable Robot With Shape Memory Alloy (SMA)-Based Artificial Muscle for Assisting With Elbow Flexion and Forearm Supination/Pronation, IEEE Robotics and Automation Letters, 7, 6028–6035, 2022.
Kim, Y., Jang, T., Gurung, H., Mansour, N. A., Ryu, B., and Shin, B.: Bidirectional rotating actuators using shape memory alloy wires, Sensor. Actuat. A-Phys., 295, 512–522, https://doi.org/10.1016/j.sna.2019.05.047, 2019.
Koh, T. H., Cheng, N., Yap, H. K., and Yeow, C.-H.: Design of a soft robotic elbow sleeve with passive and intent-controlled actuation, Frontiers in Neuroscience, 11, 597, https://doi.org/10.3389/fnins.2017.00597, 2017.
Kwakkel, G., Kollen, B. J., and Wagenaar, R. C.: Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature, Physiotherapy, 85, 377–391, https://doi.org/10.1016/S0031-9406(05)67198-2, 1999.
Lotti, N., Xiloyannis, M., Durandau, G., Galofaro, E., Sanguineti, V., Masia, L., and Sartori, M.: Adaptive model-based myoelectric control for a soft wearable arm exosuit: A new generation of wearable robot control, IEEE Robot. Autom. Mag., 27, 43–53, https://doi.org/10.1109/MRA.2019.2955669, 2020.
Park, S. J. and Park, C. H.: Suit-type Wearable Robot Powered by Shape-memory-alloy-based Fabric Muscle, Sci. Rep.-UK, 9, 9157, https://doi.org/10.1038/s41598-019-45722-x, 2019.
Park, S. J., Kim, U., and Park, C. H.: A novel fabric muscle based on shape memory alloy springs, Soft Robot., 7, 321–331, https://doi.org/10.1089/soro.2018.0107, 2020.
Pérez Vidal, A. F., Rumbo Morales, J. Y., Ortiz Torres, G., Sorcia Vázquez, F. d. J., Cruz Rojas, A., Brizuela Mendoza, J. A., and Rodríguez Cerda, J. C.: Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade, Actuators, 10, 166, https://doi.org/10.3390/act10070166, 2021.
Villoslada, A., Flores, A., Copaci, D., Blanco, D., and Moreno, L.: High-displacement flexible shape memory alloy actuator for soft wearable robots, Robot. Auton. Syst., 73, 91–101, https://doi.org/10.1016/j.robot.2014.09.026, 2015.
Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., Vecchi, F., and Carrozza, M. C.: NEUROExos: A powered elbow exoskeleton for physical rehabilitation, IEEE T. Robot., 29, 220–235, https://doi.org/10.1109/TRO.2012.2211492, 2012.
Vitiello, N., Cempini, M., Crea, S., Giovacchini, F., Cortese, M., Moise, M., Posteraro, F., and Carrozza, M. C.: Functional design of a powered elbow orthosis toward its clinical employment, IEEE-ASME T. Mech., 21, 1880–1891, https://doi.org/10.1109/TMECH.2016.2558646, 2016.
Xie, Q., Meng, Q., Zeng, Q., Dai, Y., Wu, Z., Chen, L., and Yu, H.: Design of a Soft Wrist Exoskeleton Based on SMA Actuator Module SMA, Jiqiren/Robot, 43, 406–413, https://doi.org/10.13973/j.cnki.robot.200584, 2021.
Xie, Q., Meng, Q., Yu, W., Wu, Z., Xu, R., Zeng, Q., Zhou, Z., Yang, T., and Yu, H.: Design of a SMA-based soft composite structure for wearable rehabilitation gloves, Frontiers in Neurorobotics, 17, 1047493,
https://doi.org/10.3389/fnbot.2023.1047493, 2023.
Xiloyannis, M., Annese, E., Canesi, M., Kodiyan, A., Bicchi, A., Micera, S., Ajoudani, A., and Masia, L.: Design and validation of a modular one-to-many actuator for a soft wearable exosuit, Frontiers in Neurorobotics, 13, 39, https://doi.org/10.3389/fnbot.2019.00039, 2019a.
Xiloyannis, M., Chiaradia, D., Frisoli, A., and Masia, L.: Physiological and kinematic effects of a soft exosuit on arm movements, J. Neuroeng. Rehabil., 16, 29, https://doi.org/10.1186/s12984-019-0495-y, 2019b.
Xiloyannis, M., Alicea, R., Georgarakis, A.-M., Haufe, F. L., Wolf, P., Masia, L., and Riener, R.: Soft robotic suits: State of the art, core technologies, and open challenges, IEEE T. Robot., 38, 1343–1362, https://doi.org/10.1109/TRO.2021.3084466, 2021.
Xu, Q., Li, C., Pan, Y., Li, W., Jia, T., Li, Z., Ma, D., Pang, X., and Ji, L.: Impact of smart force feedback rehabilitation robot training on upper limb motor function in the subacute stage of stroke, Neurorehabilitation, 47, 209–215, https://doi.org/10.3233/NRE-203130, 2020.
Short summary
This paper presents a novel soft bionic elbow exoskeleton based on shape metal alloy (SMA) actuators (Sobee-SMA). The exoskeleton adopts a bionic design, combining active deformation material SMA and high elastic material rubber band to simulate the contraction and relaxation of the elbow skeletal muscle. According to the static analysis of the human–exoskeleton coupling model and experiments, the exoskeleton provides elbow-assisted motion and ensures the safety of the thermal heating process.
This paper presents a novel soft bionic elbow exoskeleton based on shape metal alloy (SMA)...