Articles | Volume 14, issue 1
https://doi.org/10.5194/ms-14-159-2023
https://doi.org/10.5194/ms-14-159-2023
Research article
 | 
27 Mar 2023
Research article |  | 27 Mar 2023

Design of a soft bionic elbow exoskeleton based on shape memory alloy spring actuators

Qiaolian Xie, Qiaoling Meng, Wenwei Yu, Rongna Xu, Zhiyu Wu, Xiaoming Wang, and Hongliu Yu

Related authors

An innovative equivalent kinematic model of the human upper limb to improve the trajectory planning of exoskeleton rehabilitation robots
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021,https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
A convolutional neural-network-based diagnostic framework for industrial bearing
Bowen Yu and Chunli Xie
Mech. Sci., 15, 87–98, https://doi.org/10.5194/ms-15-87-2024,https://doi.org/10.5194/ms-15-87-2024, 2024
Short summary
Design and analysis of a dual-rope crawler rope-climbing robot
Jinhang Wang, Lairong Yin, Ronghua Du, Long Huang, and Juan Huang
Mech. Sci., 15, 31–45, https://doi.org/10.5194/ms-15-31-2024,https://doi.org/10.5194/ms-15-31-2024, 2024
Short summary
Type synthesis of non-overconstrained and overconstrained two rotation and three translation (2R3T) parallel mechanisms with three branched chains
Yu Rong, Xingchao Zhang, Tianci Dou, and Hongbo Wang
Mech. Sci., 14, 567–577, https://doi.org/10.5194/ms-14-567-2023,https://doi.org/10.5194/ms-14-567-2023, 2023
Short summary
Motion planning and control strategy of a cable-driven body weight support gait training robot
Tao Qin, Qianpeng Wang, Wei Su, Chao Wei, Yanduo Zhang, and Jianwei Zhang
Mech. Sci., 14, 413–427, https://doi.org/10.5194/ms-14-413-2023,https://doi.org/10.5194/ms-14-413-2023, 2023
Short summary
Optimal resource allocation method and fault-tolerant control for redundant robots
Yu Rong, Tianci Dou, and Xingchao Zhang
Mech. Sci., 14, 399–412, https://doi.org/10.5194/ms-14-399-2023,https://doi.org/10.5194/ms-14-399-2023, 2023
Short summary

Cited articles

Ang, B. W. K. and Yeow, C. H.: Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion, IEEE Robotics and Automation Letters, 5, 3731–3736, https://doi.org/10.1109/LRA.2020.2980990, 2020. 
Bertomeu-Motos, A., Blanco, A., Badesa, F. J., Barios, J. A., Zollo, L., and Garcia-Aracil, N.: Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices, J. Neuroeng. Rehabil., 15, 1–11, https://doi.org/10.1186/s12984-018-0348-0, 2018. 
Copaci, D., Blanco, D., and Moreno, L. E.: Flexible shape-memory alloy-based actuator: Mechanical design optimization according to application, Actuators, 8, 63, https://doi.org/10.3390/act8030063, 2019. 
Copaci, D.-S., Blanco, D., Martin-Clemente, A., and Moreno, L.: Flexible shape memory alloy actuators for soft robotics: Modelling and control, Int. J. Adv. Robot. Syst., 17, 1729881419886747, https://doi.org/10.1177/1729881419886747, 2020. 
Dinh, B. K., Xiloyannis, M., Cappello, L., Antuvan, C. W., Yen, S.-C., and Masia, L.: Adaptive backlash compensation in upper limb soft wearable exoskeletons, Robot. Auton. Syst., 92, 173–186, https://doi.org/10.1016/j.robot.2017.03.012, 2017. 
Download
Short summary
This paper presents a novel soft bionic elbow exoskeleton based on shape metal alloy (SMA) actuators (Sobee-SMA). The exoskeleton adopts a bionic design, combining active deformation material SMA and high elastic material rubber band to simulate the contraction and relaxation of the elbow skeletal muscle. According to the static analysis of the human–exoskeleton coupling model and experiments, the exoskeleton provides elbow-assisted motion and ensures the safety of the thermal heating process.