Articles | Volume 12, issue 1
https://doi.org/10.5194/ms-12-405-2021
https://doi.org/10.5194/ms-12-405-2021
Research article
 | 
14 Apr 2021
Research article |  | 14 Apr 2021

Design and performance analysis of wave linear generator with parallel mechanism

Tao Yao, Yulong Wang, Zhihua Wang, and Can Qin

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32, https://doi.org/10.5194/ms-14-19-2023,https://doi.org/10.5194/ms-14-19-2023, 2023
Short summary
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13, https://doi.org/10.5194/ms-14-1-2023,https://doi.org/10.5194/ms-14-1-2023, 2023
Short summary
Dynamic modeling and vibration characteristics analysis of parallel antenna
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029, https://doi.org/10.5194/ms-13-1019-2022,https://doi.org/10.5194/ms-13-1019-2022, 2022
Short summary
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990, https://doi.org/10.5194/ms-13-979-2022,https://doi.org/10.5194/ms-13-979-2022, 2022
Short summary
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978, https://doi.org/10.5194/ms-13-961-2022,https://doi.org/10.5194/ms-13-961-2022, 2022
Short summary

Cited articles

Astariz, S. and Iglesias, G.: The economics of wave energy: A review, Renew. Sust. Energ. Rev., 45, 397–408, https://doi.org/10.1016/j.rser.2015.01.061, 2015. 
Bharath, A., Nader, J.-R., Penesis, I., and Macfarlane, G.: Nonlinear hydrodynamic effects on a generic spherical wave energy converter, Renew. Energ., 118, 56–70, https://doi.org/10.1016/j.renene.2017.10.078, 2018. 
Cargo, C. J., Hillis, A. J., and Plummer, A. R.: Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms, Renew. Energ., 94, 32–47, https://doi.org/10.1016/j.renene.2016.03.007, 2016. 
Castellucci, V., Garcia-Teran, J., Eriksson, M., Padman, L., and Waters, R.: Influence of Sea State and Tidal Height on Wave Power Absorption, IEEE J. Oceanic Eng., 42, 566–573, https://doi.org/10.1109/JOE.2016.2598480, 2017. 
Clément, A., McCullen P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., Pontes, M. T., Schild, P., Sjöström, B. O., Sørensen, H. C., and Thorpe, T.: Wave energy in Europe: current status and perspectives, Renew. Sustain. Energ. Rev., 6, 405–431, https://doi.org/10.1016/S1364-0321(02)00009-6, 2002. 
Download
Short summary
A wave energy converter has been investigated, which can convert the absorbed wave energy into electrical energy. Through electromagnetic numerical simulations, the influences of linear generator parameters such as magnetization mode, air gap, and yoke shape on electromagnetic performance were evaluated. Numerical results show axial magnetization and Halbach magnet array can increase magnetic flux intensity more than the radial mode. The conversion rate of wave energy is derived.