Articles | Volume 13, issue 2
Research article
10 Oct 2022
Research article |  | 10 Oct 2022

Dynamic modeling and experiment of hind leg swimming of beaver-like underwater robot

Gang Chen, Zhenyu Wang, Jiajun Tu, and Donghai Wang

Related authors

Structural design and jumping motion planning of the jumping leg inspired by a goat's hindlimb
Gang Chen, Longxin He, Zhihan Zhao, Yuwang Lu, Jiajun Tu, Xiangying Ren, and Hanzhi Lv
Mech. Sci., 14, 493–502,,, 2023
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Motion planning and control strategy of a cable-driven body weight support gait training robot
Tao Qin, Qianpeng Wang, Wei Su, Chao Wei, Yanduo Zhang, and Jianwei Zhang
Mech. Sci., 14, 413–427,,, 2023
Short summary
Optimal resource allocation method and fault-tolerant control for redundant robots
Yu Rong, Tianci Dou, and Xingchao Zhang
Mech. Sci., 14, 399–412,,, 2023
Short summary
Ellipsoid contact analysis and application in the surface conjugate theory of face gears
Xiaomeng Chu, Yali Liu, and Hong Zeng
Mech. Sci., 14, 305–314,,, 2023
Short summary
Adaptive chaos control of a humanoid robot arm: a fault-tolerant scheme
Said Ghani Khan
Mech. Sci., 14, 209–222,,, 2023
Short summary
Kinematic and dynamic characteristics' analysis of a scissor multi-rod ring deployable mechanism
Bo Han, Yuxian Yao, Yuanzhi Zhou, Yundou Xu, Jiantao Yao, and Yongsheng Zhao
Mech. Sci., 14, 193–207,,, 2023
Short summary

Cited articles

Alvarado, P.: Hydrodynamic performance of a soft body under-actuated batoid robot, 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 1712–1717,, 2011. 
Azarsina, F.: Designing a Hydrodynamic Shape and Thrust Mechanism for a Batoid Underwater Robot, Mar. Technol. Soc. J., 50, 45–58,, 2016. 
Gang, C., Bo, J., and Ying, C.: Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method, Appl. Math. Model, 77, 1348–1372,, 2020. 
Gang, C., Jiajun, T., Xiaocong, T., Zhenyu, W., and Huosheng, H.: Hydrodynamic model of the beaver-like bendable webbed foot and paddling characteristics under different flow velocities, Ocean Eng., 234, 109–179,, 2021a. 
Gang, C., Xin, Y., Xujie, Z., and Huosheng, H.: Water hydraulic soft actuators for underwater autonomous robotic systems, Appl. Ocean Res., 109, 1–12,, 2021b. 
Short summary
In the research and development process of underwater motion control of the beaver-like robot, the hind leg and tail are the main actuators. In order to estimate the driving force of the robot autonomously during underwater movement, we propose this model, which can quickly and easily infer the force of the hind leg on the body. The correctness of this model is verified by experiments and simulations.