Articles | Volume 13, issue 2
Research article
10 Oct 2022
Research article |  | 10 Oct 2022

Dynamic modeling and experiment of hind leg swimming of beaver-like underwater robot

Gang Chen, Zhenyu Wang, Jiajun Tu, and Donghai Wang

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Modeling and control strategy of a haptic interactive robot based on a cable-driven parallel mechanism
Da Song, Xinlei Xiao, Gang Li, Lixun Zhang, Feng Xue, and Lailu Li
Mech. Sci., 14, 19–32,,, 2023
Short summary
Research on obstacle performance and tipping stability of a novel wheel–leg deformation mechanism
Minghui Zhang and Yiming Su
Mech. Sci., 14, 1–13,,, 2023
Short summary
Dynamic modeling and vibration characteristics analysis of parallel antenna
Guoxing Zhang, Jianliang He, Jinwei Guo, and Xinlu Xia
Mech. Sci., 13, 1019–1029,,, 2022
Short summary
A real-time and accurate detection approach for bucket teeth falling off based on improved YOLOX
Jinnan Lu and Yang Liu
Mech. Sci., 13, 979–990,,, 2022
Short summary
Research on structural parameters and kinematic properties of a drill-in granary grain condition detector
Qiang Yin, Junpeng Yu, Shaoyun Song, Yonglin Zhang, Gang Zhao, Zhiqiang Hao, and Ao Hu
Mech. Sci., 13, 961–978,,, 2022
Short summary

Cited articles

Alvarado, P.: Hydrodynamic performance of a soft body under-actuated batoid robot, 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 1712–1717,, 2011. 
Azarsina, F.: Designing a Hydrodynamic Shape and Thrust Mechanism for a Batoid Underwater Robot, Mar. Technol. Soc. J., 50, 45–58,, 2016. 
Gang, C., Bo, J., and Ying, C.: Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method, Appl. Math. Model, 77, 1348–1372,, 2020. 
Gang, C., Jiajun, T., Xiaocong, T., Zhenyu, W., and Huosheng, H.: Hydrodynamic model of the beaver-like bendable webbed foot and paddling characteristics under different flow velocities, Ocean Eng., 234, 109–179,, 2021a. 
Gang, C., Xin, Y., Xujie, Z., and Huosheng, H.: Water hydraulic soft actuators for underwater autonomous robotic systems, Appl. Ocean Res., 109, 1–12,, 2021b. 
Short summary
In the research and development process of underwater motion control of the beaver-like robot, the hind leg and tail are the main actuators. In order to estimate the driving force of the robot autonomously during underwater movement, we propose this model, which can quickly and easily infer the force of the hind leg on the body. The correctness of this model is verified by experiments and simulations.