Articles | Volume 10, issue 2
https://doi.org/10.5194/ms-10-517-2019
https://doi.org/10.5194/ms-10-517-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Effects of friction models on simulation of pneumatic cylinder

Xuan Bo Tran, Van Lai Nguyen, and Khanh Duong Tran

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Decoupling active disturbance rejection trajectory-tracking control strategy for X-by-wire chassis system
Haixiao Wu, Yong Zhang, Fengkui Zhao, and Pengchang Jiang
Mech. Sci., 14, 61–76, https://doi.org/10.5194/ms-14-61-2023,https://doi.org/10.5194/ms-14-61-2023, 2023
Short summary
A piezoelectric energy harvester for human body motion subjected to two different transversal reciprocating excitations
Weigao Ding and Jin Xie
Mech. Sci., 14, 77–86, https://doi.org/10.5194/ms-14-77-2023,https://doi.org/10.5194/ms-14-77-2023, 2023
Short summary
A feasibility and dynamic performance analysis of hydromechanical hybrid power transmission technology for wind turbines
Dharmendra Kumar and Anil C. Mahato
Mech. Sci., 14, 33–45, https://doi.org/10.5194/ms-14-33-2023,https://doi.org/10.5194/ms-14-33-2023, 2023
Short summary
A novel mathematical model for the design of the resonance mechanism of an intentional mistuning bladed disk system
Xuanen Kan and Tuo Xing
Mech. Sci., 13, 1031–1037, https://doi.org/10.5194/ms-13-1031-2022,https://doi.org/10.5194/ms-13-1031-2022, 2022
Short summary
Nonlinear characteristics of the driving model of the coaxial integrated macro–micro composite actuator
Caofeng Yu, Yu Wang, Zhihao Xiao, Gan Wu, Yongyong Duan, and Kun Yang
Mech. Sci., 13, 843–853, https://doi.org/10.5194/ms-13-843-2022,https://doi.org/10.5194/ms-13-843-2022, 2022
Short summary

Cited articles

Ahmed, F. S., Laghrouche, S., and Harmouche, M.: Adaptive backstepping output feedback control of DC motor actuator with friction and load uncertainty compensation, Int. J. Robust Nonlinear Control, 25, 1967–1992, https://doi.org/10.1002/rnc.3184, 2015. 
Armstrong, H. B.: Control of machines with friction, Springer, Boston, https://doi.org/10.1007/978-1-4615-3972-8, 1991. 
Armstrong, H. B., Dupont, P., and Canudas, D. W. C.: A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30, 1083–1138, https://doi.org/10.1016/0005-1098(94)90209-7, 1994. 
Brown, P. and McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters, J. Computa. Nonlin. Dyn., 11, 054502, https://doi.org/10.1115/1.4033658, 2016. 
Canudas, D. W. C., Olsson, H., Åström, K. J., and Linschinsky, P.: A new model for control of systems with friction, IEEE T. Automat. Contr., 40, 419–425, https://doi.org/10.1109/9.376053, 1995. 
Download
Short summary
Friction is usually present in pneumatic cylinders and can make accurate simulation and position control of the pneumatic cylinders difficult to achieve. In this study, effects of three friction models: a steady-state friction model, the LuGre model, and the revised LuGre model on the motion simulation accuracy of a pneumatic cylinder are examined by both simulation and experiment. The results show that the revised LuGre model is the best for the pneumatic cylinder among the three friction model