Bahk, C. J. and Parker, R. G.: Analytical investigation of tooth profile
modification effects on planetary gear dynamics, Mech. Mach. Theory, 70,
298–319, https://doi.org/10.1016/j.mechmachtheory.2013.07.018, 2013.

Bao, H., Jin, G., and Lu, F.: Nonlinear dynamic analysis of an
external gear system with meshing beyond pitch point, J. Mech. Sci.
Technol., 34, 4951–4963, https://doi.org/10.1007/s12206-020-1101-8, 2020.

Batinic, V.: Planetary gear dynamic response to mesh parametric excitation,
Vojnoteh. Glas., 61, 58–68, https://doi.org/10.5937/vojtehg61-2006, 2013.

Batinic, V.: Određivanje krutosti planetarnog prenosnika, Sci. Tech.
Rev., 56, 227–236, 2008.

Blagojevic, M., Matejic, M., and Vasic, M.: Comparative Overview of Calculation of
Normal Force on Cycloidal Gear Tooth, in: Internatioal Congress Motor
Vehicles & Motors – Conference porceedings, 131–137, 2020.

Blagojevic, M., Nikolic-Stanojevic, V., Marjanovic, N., and Veljovic, L.:
Analysis of Cycloid Drive Dynamic Behavior, Sci. Tech. Rev., LIX, 52–56,
2009.

Blagojević, M., Matejić, M., and Kostić, N.: Dynamic behaviour
of a two-stage cycloidal speed reducer of a new design concept, Teh. Vjesn.,
25, 291–298, https://doi.org/10.17559/TV-20160530144431, 2018.

Bu, Z., Liu, G., and Wu, L.: Modal analyses of herringbone planetary gear
train with journal bearings, Mech. Mach. Theory, 54, 99–115,
https://doi.org/10.1016/j.mechmachtheory.2012.03.006, 2012.

Chen, X., Yang, X., and Zuo, M. J.: Clearance and Sun Gear Tooth Crack
*†*, 21, 2638,
https://doi.org/10.3390/s21082638, 2021.

Chen, Z. and Shao, Y.: Dynamic simulation of planetary gear with tooth root
crack in ring gear, Eng. Fail. Anal., 31, 8–18,
https://doi.org/10.1016/j.engfailanal.2013.01.012, 2013.

Gu, X. and Velex, P.: On the dynamic simulation of eccentricity errors in
planetary gears, Mech. Mach. Theory, 61, 14–29,
https://doi.org/10.1016/j.mechmachtheory.2012.10.003, 2013.

Inalpolat, M. and Kahraman, A.: A dynamic model to predict modulation
sidebands of a planetary gear set having manufacturing errors, J. Sound
Vib., 329, 371–393, https://doi.org/10.1016/j.jsv.2009.09.022, 2010.

Kang, M. R. and Kahraman, A.: An experimental and theoretical study of the
dynamic behavior of double-helical gear sets, J. Sound Vib., 350, 11–29,
https://doi.org/10.1016/j.jsv.2015.04.008, 2015.

Karaivanov, D., Troha, S., and Pavlova, R.: Investigation into self-locking
planetary gear trains through the lever analogy, Trans. Famena, 36, 13–24,
2012.

Luo, Y. and Di, T.: Dynamics modeling of planetary gear set considering
meshing stiffness based on bond graph, Procedia Eng., 24, 850–855,
https://doi.org/10.1016/j.proeng.2011.11.2749, 2011.

Shakeri Aski, F., Mirparizi, M., Sheykh Samani, F., and Ali Hajabasi, M.:
Vibration behavior optimization of planetary gear sets, Propuls. Power Res.,
3, 196–206, https://doi.org/10.1016/j.jppr.2014.11.002, 2014.

Sondkar, P. and Kahraman, A.: A dynamic model of a double-helical planetary
gear set, Mech. Mach. Theory, 70, 157–174,
https://doi.org/10.1016/j.mechmachtheory.2013.07.005, 2013.

Troha, S., Lovrin, N., and Milovančević, M.: Selection of the
two-carrier shifting Planetary Gear Train controlled by Clutches and Brakes,
Trans. Famena, 36, 1–12, 2012.

Troha, S., Zigulić, R., and Karaivanov, D.: Kinematic operating modes
of two-speed two-carrier planetary gear trains with four external shafts,
Trans. Famena, 38, 63–76, 2014.

Zhang, L., Wang, Y., Wu, K., Sheng, R., and Huang, Q.: Dynamic modeling and
vibration characteristics of a two-stage closed-form planetary gear train,
Mech. Mach. Theory, 97, 12–28,
https://doi.org/10.1016/j.mechmachtheory.2015.10.006, 2016.