Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-761-2022
https://doi.org/10.5194/ms-13-761-2022
Research article
 | 
14 Sep 2022
Research article |  | 14 Sep 2022

A new sensorless control strategy of the PMLSM based on an ultra-local model velocity control system

Zheng Li, Zihao Zhang, Shengdi Feng, Jinsong Wang, Xiaoqiang Guo, and Hexu Sun

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Decoupling active disturbance rejection trajectory-tracking control strategy for X-by-wire chassis system
Haixiao Wu, Yong Zhang, Fengkui Zhao, and Pengchang Jiang
Mech. Sci., 14, 61–76, https://doi.org/10.5194/ms-14-61-2023,https://doi.org/10.5194/ms-14-61-2023, 2023
Short summary
A piezoelectric energy harvester for human body motion subjected to two different transversal reciprocating excitations
Weigao Ding and Jin Xie
Mech. Sci., 14, 77–86, https://doi.org/10.5194/ms-14-77-2023,https://doi.org/10.5194/ms-14-77-2023, 2023
Short summary
A feasibility and dynamic performance analysis of hydromechanical hybrid power transmission technology for wind turbines
Dharmendra Kumar and Anil C. Mahato
Mech. Sci., 14, 33–45, https://doi.org/10.5194/ms-14-33-2023,https://doi.org/10.5194/ms-14-33-2023, 2023
Short summary
A novel mathematical model for the design of the resonance mechanism of an intentional mistuning bladed disk system
Xuanen Kan and Tuo Xing
Mech. Sci., 13, 1031–1037, https://doi.org/10.5194/ms-13-1031-2022,https://doi.org/10.5194/ms-13-1031-2022, 2022
Short summary
Nonlinear characteristics of the driving model of the coaxial integrated macro–micro composite actuator
Caofeng Yu, Yu Wang, Zhihao Xiao, Gan Wu, Yongyong Duan, and Kun Yang
Mech. Sci., 13, 843–853, https://doi.org/10.5194/ms-13-843-2022,https://doi.org/10.5194/ms-13-843-2022, 2022
Short summary

Cited articles

Chen, S.-Y., Chiang, H.-H., Liu, T.-S., and Chang, C.-H.: Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control, IEEE-ASME T. Mech., 24, 741–752, https://doi.org/10.1109/TMECH.2019.2892401, 2019. 
Cheng, H., Sun, S., Zhou, X., Shao, D., Mi, S., and Hu, Y.: Sensorless DPCC of PMLSM Using SOGI-PLL-Based High-Order SMO With Cogging Force Feedforward Compensation, IEEE Transactions on Transportation Electrification, 8, 1094–1104, https://doi.org/10.1109/TTE.2021.3109018, 2022. 
Cho, K. and Nam, K.: System Identification Method Based on a Disturbance Observer Using Symmetric Reference Trajectories in PMLSM-Based Motion Systems, IEEE Access, 8, 216197–216209, https://doi.org/10.1109/ACCESS.2020.3042343, 2020. 
Dan, H., Zeng, P., Xiong, W., Wen, M., Su, M., and Rivera, M.: Model predictive control-based direct torque control for matrix converter-fed induction motor with reduced torque ripple, CES Transactions on Electrical Machines and Systems, 5, 90–99, https://doi.org/10.30941/CESTEMS.2021.00012, 2021. 
Dong, F., Zhao, J., Zhao, J., Song, J., Chen, J., and Zheng, Z.: Robust Optimization of PMLSM Based on a New Filled Function Algorithm With a Sigma Level Stability Convergence Criterion, IEEE T. Ind. Inform., 17, 4743–4754, https://doi.org/10.1109/TII.2020.3020070, 2021. 
Download
Short summary
Aiming at the problems of speed ripple, slow response, sensor dependence, and mechanical chattering in the motion of the permanent magnet linear synchronous motor (PMSLM), a model-free speed control system based on the model reference adaptive system (MRAS) is proposed in this paper. The control system designed in this paper has reference value for the system control structure of the PMSLM.