Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-485-2022
https://doi.org/10.5194/ms-13-485-2022
Research article
 | 
03 Jun 2022
Research article |  | 03 Jun 2022

Modelling and predictive investigation on the vibration response of a propeller shaft based on a convolutional neural network

Xin Shen, Qianwen Huang, and Ge Xiong

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Decoupling active disturbance rejection trajectory-tracking control strategy for X-by-wire chassis system
Haixiao Wu, Yong Zhang, Fengkui Zhao, and Pengchang Jiang
Mech. Sci., 14, 61–76, https://doi.org/10.5194/ms-14-61-2023,https://doi.org/10.5194/ms-14-61-2023, 2023
Short summary
A piezoelectric energy harvester for human body motion subjected to two different transversal reciprocating excitations
Weigao Ding and Jin Xie
Mech. Sci., 14, 77–86, https://doi.org/10.5194/ms-14-77-2023,https://doi.org/10.5194/ms-14-77-2023, 2023
Short summary
A feasibility and dynamic performance analysis of hydromechanical hybrid power transmission technology for wind turbines
Dharmendra Kumar and Anil C. Mahato
Mech. Sci., 14, 33–45, https://doi.org/10.5194/ms-14-33-2023,https://doi.org/10.5194/ms-14-33-2023, 2023
Short summary
A novel mathematical model for the design of the resonance mechanism of an intentional mistuning bladed disk system
Xuanen Kan and Tuo Xing
Mech. Sci., 13, 1031–1037, https://doi.org/10.5194/ms-13-1031-2022,https://doi.org/10.5194/ms-13-1031-2022, 2022
Short summary
Nonlinear characteristics of the driving model of the coaxial integrated macro–micro composite actuator
Caofeng Yu, Yu Wang, Zhihao Xiao, Gan Wu, Yongyong Duan, and Kun Yang
Mech. Sci., 13, 843–853, https://doi.org/10.5194/ms-13-843-2022,https://doi.org/10.5194/ms-13-843-2022, 2022
Short summary

Cited articles

Abbas, S. H., Jang, J. K., Kim, D. H., and Lee, J.-R.: Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer, Opt. Laser Eng., 132, 106133, https://doi.org/10.1016/j.optlaseng.2020.106133, 2020. 
Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., and Yu, D.: Convolutional neural networks for speech recognition, IEEE-Acm. T. Audio Spe., 22, 1533–1545, https://doi.org/10.1109/TASLP.2014.2339736, 2014. 
Al-Bedoor, B.: Dynamic model of coupled shaft torsional and blade bending deformations in rotors, Comput. Method. Appl. M., 169, 177–190, https://doi.org/10.1016/S0045-7825(98)00184-4, 1999. 
Bauchau, O. and Hong, C.: Finite element approach to rotor blade modeling, J. Am. Helicopter Soc., 32, 60–67, https://doi.org/10.4050/JAHS.32.60, 1987. 
Elman, J.: Finding structure in time, Cog. Sci., 14, 179–211, https://doi.org/10.1207/s15516709cog1402_1, 1990. 
Download
Short summary
A new measurement method for the dynamical response of a marine propeller shaft with lower cost, simple maintenance and high accuracy is proposed. The shaft vibration predicted from the vibration signals of the bearings is easy to measure. The convolutional neural network can fit the nonlinear relationship between the vibration signals of the bearing and propeller shaft.