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It is crucial to detect the working state of a propeller shaft in real time, as its vibration affects the
safety of the marine propulsion system directly. With the difficulty of obtaining an accurate signal due to the
particularity of propeller shaft, a suitable method for estimating the vibration response of propeller shaft is
proposed in this paper. The nonlinear relationship of vibration signals between the bearing and propeller shaft
is obtained by fitting the existing data sets with various neural networks. The feasibility of the proposed method
is demonstrated through a prediction of shaft vibration on the basis of a shaft experimental platform. Moreover,
the optimal model of the neural network is obtained by comparing the influence of different hyper parameters
and network models. The results indicate a prediction accuracy of over 95 % of the shaft vibration in the lower
frequency band for a convolutional neural network. Therefore, the research provides an easier maintenance
method for predicting the real-time monitoring for the vibration response of the propeller shaft.

The propeller shaft is an essential component of marine
propulsion system that always works in a harsh environment.
The impact factor includes a centrifugal force, hydrodynamic
force, and excitation force, and sea water erosion can also
lead to a high failure rate of propeller blades. However, these
excitations are complex and variable due to the working con-
dition of the propeller shaft. Meanwhile, the propeller is ex-
posed to the sea for long times during sailing. In order to
improve the service life of a propeller shaft and avoid the
occurrence of safety accidents, it is of great significance to
realise the real-time monitoring of its working state. This op-
erating state can be directly reflected by a vibration signal of
the propeller shaft. While it is difficult to obtain the vibra-
tion signal through traditional sensors, these sensors need to
be close to the monitored object, which will cause them to
be exposed to sea water, resulting in the maintenance being
difficult and a high failure rate. How to obtain the vibration

response of a propeller shaft accurately has become the re-
search direction of many scholars.

The traditional methods for estimating the vibration re-
sponse of a propeller shaft include the numerical method
(Srinivasan, 1984; Bauchau and Hong, 1987) and the exper-
imental method (Al-Bedoor, 1999; Scalzo et al., 1986; Tang
and Dowell, 1993; Abbas et al., 2020; He et al., 2020). In
this field, Morin et al. (1999) built a laser monitoring sys-
tem, based on optical sensors, to monitor the running state
of propeller shaft in real time. Ou et al. (2019) established
a numerical calculation model of propeller blade with com-
putational fluid dynamic (CFD) technology on the basis of
vibration theory. The fault signal symptoms were extracted,
and the fault diagnosis was carried out according to vibra-
tion signals of the shaft. Kuantama et al. (2021) conducted
vibration analysis on the propeller shaft of a four-axis air-
craft based on a laser technique of vibration measurement.
He et al. (2020) proposed an improved particle filter predic-
tion method, which combined the advantages of grey predic-
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Figure 1. Physical drawing of the propulsion shaft test bench.

tion to predict the motion state and diagnose the shaft fault
of the autonomous underwater vehicle in real time.

The traditional experimental method used in the current
investigation still has limitations for the dynamical measure-
ment, and there are many factors that should be considered in
the modelling process as being the high degree of the nonlin-
earity in the vibration response. In pursuit of high precision,
the cost of the traditional numerical calculation increases ex-
ponentially. With the application in a dynamical measure-
ment, the laser vibrometer has become a new experimental
technology, as it has achieved accurate results, although it is
difficult to use widely in ordinary ships because of the high
cost, difficult maintenance and other deficiencies.

As there is a certain nonlinear relationship between the vi-
bration response of the stern, a sliding bearing is fitted with
the application of the neural network. Second, the effective-
ness of the neural network model is experimentally demon-
strated. The optimal network model is obtained through ex-
tensive calculations and the optimisation of parameters. Fi-
nally, the prediction accuracy of proposed model is analysed
to estimate the performance of the vibration signal of a pro-
peller shaft under the same trainable parameters.

2 Experimental environment and data processing

2.1 Experimental set-up

In this paper, the data sets of vibration signals for the bearing
and propeller shaft are obtained based on the experimental
platform of a ship propulsion shaft. The physical diagram is
shown in Fig. 1. The total length of the shaft system of the
test bench is 2665 mm. It consists of a drive shaft (driven by
a variable frequency motor), a reducer, a thrust bearing with
support, a propeller, a foundation, a base and a number of
sensors. In addition, it is equipped with lubrication, hydraulic
loading and condition-monitoring systems.
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In the vibration test, the acquisition of bearing vibration
signals is realised through a triaxial accelerometer sensor
(Briiel & Kjer (B & K) 4535-B-001) located on the bear-
ing seat, as shown in Fig. 2a. The vibration signals of the
propeller shaft are obtained by a laser displacement sensor
(Optex CD33-50NV), as shown in Fig. 2b. The multichan-
nel signal analyser (signal acquisition; PXIE-4499) consists
of servo amplifier, signal acquisition card and signal output
device for data acquisition and vibration information acqui-
sition. Thus, the vibration acceleration signal of the bearing
and propeller shaft can be obtained simultaneously. The data
set of the training neural network is designed to be 100 rpm
(revolutions per minute). In order to test the network more
accurately, the vibration response with rotational speeds of
150, 200, 250 and 300 rpm are selected as the test set.

2.2 Data collection and processing

The data collection is mainly completed by the sensors, the
acquisition module and the storage module. The triaxial ac-
celeration sensor and displacement sensor convert the physi-
cal quantity into electrical signals, the acquisition module is
responsible for converting the electrical signals of the sensor
into digital signals, and the PC terminal is responsible for dis-
playing and saving the strain data. Moreover, the LabVIEW
measurement and control software are applied to visualise
and record the data. The acceleration response of the bearing
and the displacement response of the propeller shaft can be
measured (as shown in Fig. 3).

In order to ensure that the vibration signal is not distorted
as far as possible, a higher sampling frequency is selected.
The sampling number N is 760000, the sampling interval
is 0.00005 s, and the sampling frequency is 20 000 Hz. It is
difficult to deal with such a large volume of data in real time
as the prediction of neural network is applied. Therefore, it
is necessary to analyse the frequency of the collected signal
and reselect the appropriate sampling frequency.

The vibration signals collected in the experiment are gen-
erally aperiodic discrete signals. For the transformation of
discrete signals, only the discrete Fourier transform (DFT)
method will be applied, and only the discrete and finite length
data can be processed by the computer. The fast Fourier
transform (FFT), as a fast algorithm of DFT, can greatly re-
duce the processing time of the timing signal. Figure 4 is
the amplitude—frequency curve of the original signal after the
FFT.

As can be seen from Fig. 4, the frequency of the vibra-
tion signals of the bearing are mainly concentrated within
2500 Hz. According to the sampling theorem, the sampling
frequency is 2 times greater than the highest frequency of the
signal. The frequency of the vibration sample is repositioned
as 5000 Hz to avoid the distortion of the signal. Then, a fre-
quency analysis of propeller shaft vibration is carried out,
and the vibration frequency of the propeller shaft is mainly

https://doi.org/10.5194/ms-13-485-2022
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Figure 2. (a) Triaxial accelerometer sensor. (b) Laser displacement sensor.
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Figure 3. Analysis of the vibration signals in the time domain.

concentrated within 120 Hz, which determines the number of
neurons in the output layer of the neural network.

3 The principle of neural network and the selection
of network model

3.1 Principles of the convolutional neural network

The convolutional neural network (CNN) is one of the most
popular models among many neural network models (Abdel-
Hamid et al., 2014). It can be traced back to the neocognitron
proposed by Fukushima (1980), with continuous improve-
ments by a large number of researchers, which has devel-
oped into current CNN. It is able to extract some abstract
features efficiently and accurately because of its powerful
feature extraction capability. The CNN model is originally
a two-dimensional (2D) neural network with a 2D matrix as
input. With the deepening of the research, it has been found
that CNN also has a strong feature extraction ability for one-
dimensional timing signals and has achieved good results in
the vibration signal processing (Ma et al., 2020), fault diag-
nosis (Khan et al., 2018), natural language recognition (NLP;
Zhao et al., 2018; Zhang et al., 2017) and other fields.

CNN is a kind of deep neural network with a convolu-
tional structure, which can effectively reduce the parameters
to be trained. The three most important core ideas of con-

https://doi.org/10.5194/ms-13-485-2022
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volutional neural network are as follows: the local receptive
field, weight sharing and pooling, which can greatly reduce
the number of parameters and alleviate the overfitting prob-
lem of the model. Handwritten digit recognition is the most
typical case applied by CNN, and its accuracy has been qual-
itatively improved compared with other traditional methods
(Waibel et al., 1989). The convolutional neural network is
mainly composed of an input layer, convolutional layer, pool-
ing layer, full connection layer and output layer. The network
structure of the classic CNN network LeNet (LeCun et al.,
1998) is shown in Fig. 5.

The convolution layer is composed of several convolution
kernels. Different from the traditional BP neural network,
these convolution kernels are variable in length and width.
Each convolution kernel has multiple learnable parameters
which can be used for convolution operation to enhance the
features of original information and reduce the interference
of noise. The following is the mathematical model of convo-
lution operation, as shown in the formula (Guo et al., 2019):

l 1
Xj=f<Zj) (1)
1 X 1—1 l !
zj=2;zj K+, 2)
i=
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where X; is the jth feature map of the /th convolutional

layer, and Z! is the net activation of the Jjth channel on the
Jjth convolutional layer. The calculation method is that each
feature map Z' of the previous layer is convolved by a learn-
able convolution kernel, then the overall sum is added with
an offset, and finally the feature map is output through the
activation function. Kll . is the convolution kernel, bé. is the
bias, and f (-) is the activation function.

The pooling layer, also known as the lower sampling layer,
mainly conducts down-sampling processing on the original
signal. It can effectively reduce the data volume, speed up the
training and real-time processing capacity and avoid overfit-
ting to a certain extent. Pooling is further divided into mean
pooling and maximum pooling. The mean pooling is gener-
ally adopted in one-dimensional signal field, and maximum
pooling is applied in two-dimensional signal field.

The core of training the neural network is to make the
loss function decrease as the number of iterations increases,
which is mainly realised by the gradient descent method.
When the input passes through the neural network, the func-
tion of the sum will be obtained, which is the predicted value.
The mean square deviation of the difference between actual
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value and predicted value is called the residual error. Dur-
ing the back propagation, the direction which reduces L can
be obtained by taking the partial derivative of each learnable
parameter and aiming at the update of trainable parameters.
Meanwhile, an appropriate learning rate can be set to con-
trol the intensity of the residual back propagation. The up-
dated formula of weight W and bias B is as follows (Li et al.,
2021):

IE(W,b)
Wi=W; —n——— 3
i i—1n W 3
IE(W,b)
bi = b — p———, 4
i i—1 ab; “4)

where W; is the weight of the ith layer, 1 is the learning rate,
E is the residual error, and b; is the bias of the ith layer.

Back-propagation neural network (BPNN) is one of the most
classic neural networks, which was proposed by Rumelhart
and McClellandetal (1986). BPNN constantly train neurons
in the network according to the error between the predicted
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The structure of the BP neural network.

value and the real value. This training method is called back
propagation, which is also the core training method of neu-
ral network. The BP neural network mainly consists of an
input layer, an output layer and a number of hidden layers.
The learning process of a neural network can be mainly di-
vided into two stages. In the first stage (also known as for-
ward propagation), the input signal is transmitted layer by
layer. For each neuron, there are two trainable parameters,
and the output value is obtained after calculation. In the sec-
ond stage (also known as back propagation), there is a devia-
tion between the predicted value and the expected value; the
partial derivative of each is taken in a recursive step-by-step
manner, reducing the error in the direction of the smaller.
The error will converge to a certain interval, and the network
training will be completed after constant iteration. The mul-
tilayer feed-forward network structure, based on a BP neural
network algorithm, is shown in Fig. 6 (Li et al., 2017). The
mathematical model of this approach is as shown in the fol-
lowing:

Zf:i:wll.j-x;_l+b£. )
j=1
The function f{y) is a simple sigmoid function, as follows:
1
foor= 0= (©)

Combining the formulas of Egs. (5) and (6) can result in
Eq. (7), as follows:

1

(s ol )
l+e ( J=1Wi X +bi)

7l = )

The weight update of the BP neural network reduces the er-
ror. The weight update of the formula is as follows:

oE
8w,~j ’

w,-j(t—i-l):w,-j(t)—é ®)

where § is the learning rate, E is the error between the net-
work output and the expected output, and ¢ is the number of
network layers.

A recurrent neural network (RNN) is a feed-forward neural
network with a time connection. The information received
by a neuron not only includes the output of the previous
neuron but also includes its own state at the previous mo-
ment. It makes the RNN more advantageous in the process-
ing of timing signals. Bidirectional RNN (Bi-RNN) is one of
the most popular algorithms in deep learning (Elman, 1990)
and is now in the Bi-RNN (Bi-RNN) field. The long short-
term memory (LSTM) network, a recursive neural network
(Schmidhuber, 2015), is an important branch of RNN, which
has been widely used to process various time series signals.
As in the field of predicting battery life, LSTM can achieve
better performance (Jiao et al., 2021). The network structure
of a RNN is shown in Fig. 7 (Guo et al., 2021).

In RNN, the Elman (1990) network is connected between
two cycle units, and the Jordan network is connected with a
closed loop. The corresponding recursive mode is as follows
(Pollack, 1990):

Elman (1990):

WO = f (b0 4 wx O+ 5) 5O =g (vh +¢). ©)
Jordan (Elman, 1990):
O = £ (0D 4 wx O+ 5) 5O =g (vh +c), (10)

where f and g are activation functions, such as the sigmoid
function and hyperbolic tangent function, # is time, and u and
v are memory weights (trainable parameters).

The most suitable network model varies in different cases.
Therefore, three popular models, CNN, BP and RNN, are
compared. With the same quantity of the trainable parameters
and 10000 times of training, the prediction accuracy of the
three models is obtained. The prediction results are shown in
Fig. 8. At the same time, several model evaluation indexes
are introduced to evaluate the performance of the model. The
evaluation indexes of the regression model mainly include
RMSE (root mean squared error), RAE (relative absolute er-
ror), MRE (mean relative error) and R? (coefficient of de-
termination). Its formula is shown as Eqgs. (11)—(14) in the
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Values of different models under different evaluation in-

dexes.
Model RMSE RAE MRE R?
CNN  0.00175 6.593% 0.0843 0.9287
RNN  0.00169 6.362% 0.0811 0.9264
BPNN 0.00355 10.28% 0.1606 0.8745
following:
RMSE = (11)
n
Z |Pl - all
RAE == (12)
> la—a;l
i=1
n
Z |P1 - all
MRE= "~ (13)
2 lail
1=
n
Z (Pi - az)
RR=1-2= (14)
> (a; —a)?

Of these, P; is the predicted target, and g; is the actual target.
a is the average of the true values. RMSE, RAE and MRE are
error calculation formulas. The smaller the value, the better
the performance of the model. R? is between 0 and 1, and
the closer it is to 1, the higher the accuracy of the model. Ac-
cording to the model evaluation indexes, the training results
of each model are shown in Table 1.

It can be seen from the table that when the number of
trainable parameters is the same, the prediction accuracy of
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The prediction results of the different neural networks.

RNN is slightly higher than that of CNN, and both are higher
than that of BPNN. However, the response speed of RNN
is significantly lower than that of CNN because RNN needs
to process vibration signals multiple different times at the
same time in the prediction process, and the response speed
is about 10 times slower than CNN, which depends on the
model design of RNN. Considering that real-time monitoring
requires a high response rate and a comprehensive prediction
accuracy, CNN is finally selected for the following research.

The selection of superparameters is very important as the
neural network is building, which directly affects the perfor-
mance of the network. Hyperparameters include the number
of neurons per layer, the number of hidden layers and the size
of the filter bank. Then, each parameter will be analysed, and
the selection will be determined, as shown in Table 2.



Comparison of each super parameter.

Input dimension MRE  Number of hidden layers

MRE  Size of convolution kernel MRE

1 x 250 6.9 % 1 7.1% 1x2 7.1%
1 x 500 6.3 % 2 6.1 % 1x3 59 %
1 x 750 7.0 % 3 6.9 % 1 x5 5.1%
1 x 1000 7.4 % 4 7.7 % 1x7 53%
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Training results of convolutional neural network.

1. The design of the input layer and output layer. The bear-

ing vibration signals are generally non-periodic signals
and can be considered as being composed of a multiple
superposition of the periodic signal, which is the input
of the neural network. The span of each input timing
signal needs, as far as possible, to be large to ensure
that it covers most of the bearing vibration cycle. Based
on the frequency analysis in the previous study, the vec-
tor dimensions of different input layers and RAE after
1000 iterations are compared. Finally, the input layer
is defined to be a 1 x 500 one-dimensional vector and
1 x 50 one-dimensional vector for the output layer.

. The number of hidden layers. A deeper network struc-
ture will lead to overfitting, while a shallower network
will lead to an inability to fit the nonlinear relation-
ship between input and output effectively. In general,
the two-layer fully connected layer is sufficient to meet
the requirements of most problems. In the case of a
large volume of data, the number of layers can be appro-
priately increased to achieve higher accuracy. Through
comparing the number of different hidden layers, the
mean absolute errors on the test set after an iteration of
1000 times can be determined, as shown in Table 2. Fi-
nally, it adopts two layers of a fully connected layer, and
two sets of a CBAPD (convolution + batch normalisa-
tion + activation function + pooling + dropout) layer.
Among them, the pooling layer adopts mean pooling,
and the step size of the pooling is 2.

. Size of the convolutional kernel. The convolutional ker-
nel is the main learning parameter of the convolutional
neural network. In order to improve the receptive field,

the convolutional kernel with a value greater than 2 is
generally adopted. After 1000 iterations, the mean ab-
solute errors on the test set with different convolution
kernel sizes were compared, as shown in Table 2. A 1 x5
size convolution kernel is used, and the number of chan-
nels is three. At the same time, the full zero edge filling
is adopted to keep the dimension unchanged when the
input passes through the convolutional layer.

4. Activation functions. The rectified linear unit (ReLU) is

the most popular activation function in the field of deep
learning, which can effectively alleviate the problem of
gradient disappearance and can also speed up the train-
ing speed of deep learning models. The expression of
ReLU is as follows:

Sy = max(0, x). (15)

5. Loss function. For regression problems, the mean square

error (MSE) is generally adopted as the loss function.
The L2 regularisation term is also used to prevent over-
fitting. The principle is as follows:

I & N
MSE=—3 | (v —5)| (16)
i=1

m
L> = min,, [Z,\||W||§], (17)
i=1

where m is the number of samples, y; is the experimen-
tal result, y; is the predicted result, and w is the weight
of neurons.



Errors in the time domain and frequency domain under different working conditions.

Working conditions MRE in time domain ~ MRE in low-frequency domain ~ MRE in high-frequency domain

150 rpm 4.007 % 4.024 % 10.233 %

200 rpm 4.455 % 3.539 % 12.412 %

250 rpm 4.874 % 3.928 % 11.382%

300 rpm 4.679 % 4.171 % 12.608 %
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(a—h) Prediction results in time domain/frequency domain analysis.

Through experiments, two sets of data are obtained under
various working conditions. Each set of data contains the re-
sponse of 760000 results bearing the acceleration and shaft
displacement. In total, 80 % of the 100 rpm data set is taken

as the training set of the neural network and the rest 20 % as
the test set. The data of 150 rpm are taken as the final test
set to demonstrate the feasibility and universality of the pro-
posed method. The prediction results can be seen in Fig. 9.
It shows that the network fits well on the training set when



the value of the RMSE in the training set is 0.00026 and the
MRE is 3.37 %.

In order to guarantee the high prediction accuracy of the
trained neural network under different working conditions,
experimental data sets of various conditions are collected to
demonstrate the feasibility of the method. About 5000 con-
tinuous vibration signals are taken as sample data for each
condition and substituted into the neural network. The pre-
diction results are displayed in Fig. 10a—h, with the MRE of
each working condition shown in Table 3.

The results show that the trained convolutional neural net-
work model has a better prediction accuracy in the time do-
main under different working conditions, with a prediction
accuracy of more than 96 %. Meanwhile, in order to check
the distortion of the predicted results in the frequency do-
main, the discrete Fourier transform (DFT), based on the ex-
perimental and predicted values, is conducted. The frequency
components of the predicted results and the experimental val-
ues are compared. It shows that a high accuracy can still be
maintained in the low-frequency part of the frequency do-
main. The high-frequency part of more than 400 Hz has a
certain distortion and larger noise.

In this paper, a variety of neural network models are applied
to predict the vibration signal of the marine propeller shaft.
Through comparative analysis, it is found that RNN has cer-
tain advantages in the prediction accuracy when dealing with
problems about timing signals, but this advantage is not obvi-
ous compared with CNN (see Table 2 and Fig. 8 for specific
data). The reason may be that, although the vibration signal
has a certain periodicity, the context is not as closely related
as the sound signal, so this advantage cannot be effectively
highlighted. In terms of the response rate, the RNN can not
achieve an ideal effect, and the CNN is relatively balanced in
the response rate and prediction accuracy.

The experimental results show that when the trainable pa-
rameters are the same, the prediction accuracy of the RNN
is significantly higher than that of the BPNN. That means
that the feature extraction ability of the convolution layer is
significantly stronger than that of the full connection layer.
When CNN is selected as the follow-up applied method
through the optimisation and training of neural network, the
feasibility is demonstrated in the test set, as its prediction
accuracy is more than 90 %. And the prediction accuracy
could be more than 95 % when only the low-frequency part
is considered, which is also the ¢ limitation of the proposed
method. The signal of the high-frequency part shows a weak
prediction accuracy, but this can be ignored for a low-speed
rotational shaft such as a marine propeller shaft.

In this research, a reliable method to estimate the vibra-
tion response of a propeller shaft is proposed. Based on the
convolutional neural network, the nonlinear relationship be-
tween the vibration signals of the bearing and propeller shaft
is fitted. The dynamical response of the propeller shaft is pre-
dicted from the vibration signals of bearings that are experi-
mentally measured. Compared with the traditional measure-
ment method, the cost is lower, and the maintenance is sim-
ple for the proposed method. Moreover, this method is more
suitable for the marine propeller shaft with a lower rotational
speed.

With the verification based on the experimental data, the
results show that the convolutional neural network can fit
the nonlinear relationship between the vibration signals of
a bearing and propeller shaft. It has high prediction accuracy
in both the time and frequency domains. The low-frequency
(less than 400 Hz) part can guarantee high accuracy. The dis-
tortion in the high-frequency part should be negligible for
lower speed rotors, as the marine propeller shaft with the vi-
bration frequency is mainly concentrated within 300 Hz.
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per can be obtained upon request to the corresponding author.
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