Articles | Volume 12, issue 2
https://doi.org/10.5194/ms-12-819-2021
https://doi.org/10.5194/ms-12-819-2021
Research article
 | 
30 Aug 2021
Research article |  | 30 Aug 2021

Tooth surface modification of double-helical gears for compensation of shaft deflections

Lan Liu, Qiangyi Ma, Jingyi Gong, Geng Liu, and Xiaomei Cao

Related authors

Review article: Research on coupled vibration of multi-engine multi-gearbox marine gearing
Jingyi Gong, Geng Liu, Lan Liu, and Long Yang
Mech. Sci., 12, 393–404, https://doi.org/10.5194/ms-12-393-2021,https://doi.org/10.5194/ms-12-393-2021, 2021
Short summary

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Decoupling active disturbance rejection trajectory-tracking control strategy for X-by-wire chassis system
Haixiao Wu, Yong Zhang, Fengkui Zhao, and Pengchang Jiang
Mech. Sci., 14, 61–76, https://doi.org/10.5194/ms-14-61-2023,https://doi.org/10.5194/ms-14-61-2023, 2023
Short summary
A piezoelectric energy harvester for human body motion subjected to two different transversal reciprocating excitations
Weigao Ding and Jin Xie
Mech. Sci., 14, 77–86, https://doi.org/10.5194/ms-14-77-2023,https://doi.org/10.5194/ms-14-77-2023, 2023
Short summary
A feasibility and dynamic performance analysis of hydromechanical hybrid power transmission technology for wind turbines
Dharmendra Kumar and Anil C. Mahato
Mech. Sci., 14, 33–45, https://doi.org/10.5194/ms-14-33-2023,https://doi.org/10.5194/ms-14-33-2023, 2023
Short summary
A novel mathematical model for the design of the resonance mechanism of an intentional mistuning bladed disk system
Xuanen Kan and Tuo Xing
Mech. Sci., 13, 1031–1037, https://doi.org/10.5194/ms-13-1031-2022,https://doi.org/10.5194/ms-13-1031-2022, 2022
Short summary
Nonlinear characteristics of the driving model of the coaxial integrated macro–micro composite actuator
Caofeng Yu, Yu Wang, Zhihao Xiao, Gan Wu, Yongyong Duan, and Kun Yang
Mech. Sci., 13, 843–853, https://doi.org/10.5194/ms-13-843-2022,https://doi.org/10.5194/ms-13-843-2022, 2022
Short summary

Cited articles

Conry, T. F. and Seireg, A.: A Mathematical Programming Technique for the Evaluation of Lo-ad Distribution and Optimal Modifications for Gear Systems, J. Eng. Indust., 95, 1115–1122, https://doi.org/10.1115/1.3438259, 1973. 
Fang, Z. D.: Model and Approach for Loaded Tooth Contact Analysis (LTCA) of Gear Drives, J. Mech. Trans., 22, 2–4, https://doi.org/10.16578/j.issn.1004.2539.1998.02.001, 1998. 
Francisco, S. M. and Jose, L. I.: Numerical tooth contact analysis of gear transmissions t-hrough the discretization and adaptive refinement of the contact surfaces, Mech. Mach. Theory, 101, 75–94, https://doi.org/10.1016/j.mechmachtheory.2016.03.009, 2016. 
Gonzalez, P. I., Roda, C. V., Fuentes, A., Sanchez, M. F., and Iserte, J. L.: A Finite Element Model for Consideration of the Torsional Effect on the Bearing Contact of Gear Drives, J. Mech. Design, 134, 1281–1292, https://doi.org/10.1115/1.4006831, 2012. 
Gosselin, C., Cloutier, L., and Nguyen, Q. D.: A general formulation for the calculation of the load sharing and transmission error under load of spiral bevel and hypoid gears, Mech. Mach. Theory, 30, 433–450, https://doi.org/10.1016/0094-114X(94)00049-Q, 1995. 
Download
Short summary
The paper studies the three-dimensional contact finite element model of a double helical gear-shaft-bearing system based on the load-bearing contact analysis of the tooth surface. The results show that the tooth surface bearing contact of the system has the phenomenon of partial load due to the supporting deformation, and the unmodified herringbone gear has obvious contact stress concentration, which can be effectively improved by gear tooth modification.