Articles | Volume 12, issue 1
https://doi.org/10.5194/ms-12-689-2021
https://doi.org/10.5194/ms-12-689-2021
Research article
 | 
01 Jul 2021
Research article |  | 01 Jul 2021

Design optimization of vehicle asynchronous motors based on fractional harmonic response analysis

Ao Lei, Chuan-Xue Song, Yu-Long Lei, and Yao Fu

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Decoupling active disturbance rejection trajectory-tracking control strategy for X-by-wire chassis system
Haixiao Wu, Yong Zhang, Fengkui Zhao, and Pengchang Jiang
Mech. Sci., 14, 61–76, https://doi.org/10.5194/ms-14-61-2023,https://doi.org/10.5194/ms-14-61-2023, 2023
Short summary
A piezoelectric energy harvester for human body motion subjected to two different transversal reciprocating excitations
Weigao Ding and Jin Xie
Mech. Sci., 14, 77–86, https://doi.org/10.5194/ms-14-77-2023,https://doi.org/10.5194/ms-14-77-2023, 2023
Short summary
A feasibility and dynamic performance analysis of hydromechanical hybrid power transmission technology for wind turbines
Dharmendra Kumar and Anil C. Mahato
Mech. Sci., 14, 33–45, https://doi.org/10.5194/ms-14-33-2023,https://doi.org/10.5194/ms-14-33-2023, 2023
Short summary
A novel mathematical model for the design of the resonance mechanism of an intentional mistuning bladed disk system
Xuanen Kan and Tuo Xing
Mech. Sci., 13, 1031–1037, https://doi.org/10.5194/ms-13-1031-2022,https://doi.org/10.5194/ms-13-1031-2022, 2022
Short summary
Nonlinear characteristics of the driving model of the coaxial integrated macro–micro composite actuator
Caofeng Yu, Yu Wang, Zhihao Xiao, Gan Wu, Yongyong Duan, and Kun Yang
Mech. Sci., 13, 843–853, https://doi.org/10.5194/ms-13-843-2022,https://doi.org/10.5194/ms-13-843-2022, 2022
Short summary

Cited articles

Albrecht, P. F., Appiarius, J. C., McCoy, R. M., Owen, E. L., and Sharma, D. K.: Assessment of the reliability of motors in utility applications – updated, IEEE T. Energy Conver., 1, 39–46, 1986. a
Arhun, S., Migal, V., Hnatov, A., Hnatova, H., and Ulyanets, O.: System approach to the evaluation of the traction electric motor quality, EAI Endorsed Transactions on Energy Web, 7, 162733, https://doi.org/10.4108/eai.13-7-2018.162733, 2018a. a
Arhun, S., Migal, V., Hnatov, A., Ponikarovska, S., and Novichonok, S.: Determining the quality of electric motors by vibro-diagnostic characteristics, EAI Endorsed Transactions on Energy Web, 7, 164101, https://doi.org/10.4108/eai.13-7-2018.164101, 2018b. a
Benbouzid, M. and Kliman, G.: What stator current processing-based technique to use for induction motor rotor faults diagnosis?, IEEE T. Energy Conver., 22, 62–62, 2003. a
Benbouzid, M.: Bibliography on induction motors faults detection and diagnosis, IEEE T. Energy Conver., 14, 1065–1074, 1999. a
Download
Short summary
In this paper, the fractional model of the asynchronous motor rotor was firstly established with a peculiar memory characteristic, and the introduced harmonic response was able to fit the reality well. Then, we set high rigidity and less mass as optimization functions and transform them into the problem of the first-order frequency and mass. In order to find the optimal parameters, an accelerated optimization method based on response surface is proposed.