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Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor per-
formance. Although certain achievements have been made, the previous finite element model did not reflect the
historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed
together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic re-
sponse analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective func-
tions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency
is discussed. In order to find the optimal values, an accelerated optimization method based on response surface
(ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can
be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order
frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model
effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous
motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light
mass of asynchronous motor rotors.

1 Introduction

Electric vehicles appear to be one of the viable choices in
face of the world’s increasing attention to environmental pro-
tection, energy shortage and other issues (Emadi et al., 2008;
Arhun et al., 2018a; Migal et al., 2019). Therefore, it is nec-
essary to design and optimize vehicle monitors. Among the
various kinds of electric monitors, induction motors have
been widely used because of better performance (Dvadnenko
et al., 2018; Francis et al., 2019; Hnatov et al., 2019; Zarma
et al., 2019). High reliability and high efficiency are its main
characteristics of induction motor (Benbouzid, 1999). For in-
duction motors, it is reported that the failure rate is from sta-
tor, bearing, rotor and other aspects (O’Donnell, 2007; Ben-
bouzid and Kliman, 2003; Yildirim et al., 2014; Albrecht et
al., 1986).

Reducing the vibration effect of motors can improve the
reliability, durability and service life of a motor. In order to
achieve this, it is usual to analyze the natural frequency of the
motor. The natural frequency can be obtained by numerical
methods or modal test experiments (Ewins, 1985; Arhun et

al., 2018b). Much research has been proposed in recent years.
Ma et al. (2015) proposed an analysis method to study the
vibration characteristics of an asymmetric and anisotropic
rotor-bearing system. By establishing a linear differential
equation with periodic coefficients, the calculation efficiency
was improved, and the results were also verified by experi-
mental studies. They suggested to investigate the frequency
characteristics and stability of asymmetric anisotropic rotor-
bearing systems. Modifications are made to incorporate the
effect of stator asymmetry into an existing three-dimensional
(3D) solid finite element procedure. In the research of Yin et
al. (2020), a specially designed modal conversion horn with
an oblique beam was applied. They transferred the longitudi-
nal vibration to an additional bending vibration. Modal anal-
ysis was conducted to illustrate the elliptical vibration pro-
cess by the finite element method. Then the output perfor-
mance of the motor was evaluated via a series of experiments.
Widdle et al. (2006) proposed a model for high-frequency
torsional vibration analysis. The research of Li et al. (2008)
studied the nonlinear vibration of a three-phase AC motor-
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linkage mechanism system with links fabricated from three-
dimensional braided composite materials. Migal et al. (2021)
described a method to select an asynchronous traction elec-
tric drive for an electric vehicle that enables the assessment
of necessary technical, environmental and operational quali-
ties.

In general, the prior studies have made progress on vibra-
tion modal analysis and design optimization of motor, but
there is still room for improvement. Firstly, the built finite el-
ement model does not consider the historical process of the
motor rotor well. Therefore, it cannot accurately reflect the
actual dynamic characteristics of the motor. Moreover, most
of the existing methods discussed the motor performance by
considering frequency, but fewer involved the research of
considering the mass and rigidity together. To improve the
above situations, this paper combines the fractional harmonic
response (Wang and Jiang, 2018; Yan et al., 2020) to the fi-
nite element model that can have the dynamic characteristic.
Then, we set the high rigidity and the light mass as the op-
timization objectives. By analyzing the relationship between
rigidity and first-order frequency, we transform the optimiza-
tion into the first-order frequency and the mass. In order
to find optimal values, an accelerated optimization method
based on response surface (ARSO) is proposed in this pa-
per, and three intelligent optimization algorithms – including
traversal search algorithm (TS) (Fang and Xu, 2017), multi-
objective genetic algorithm (MOGA) (Ponnambalam et al.,
2000) and optimization algorithm based on response surface
(RSO) (Munck et al., 2008) – are selected for comparison.
Finally, experimental results are given to prove the effective-
ness of our proposed approach.

The paper is organized as follows: Sect. 2 presents the
fractional finite element model of rotor support casing. In
Sect. 3, the design optimization of asynchronous motor ro-
tor is described. Section 4 shows the experimental results.
Section 5 is optimization analysis, and discussion is given in
Sect. 6. Section 7 concludes this paper.

2 Fractional rotor response system

2.1 Definition of fractional derivative

As defined in the work by Scherer et al. (2011), the
Grünwald–Letnikov definition shows an expression for qth
derivative, where q ∈ R+. In addition, it allows one to con-
sider the so-called short-memory principle as follows.

aD
q
t f (t)= limh→0

1
hq

[
t−a
h
]∑

j=0
(−1)j

(
q
j

)
f (t − jh), (1)

where (−1)j (qj ) represents binomial coefficients, cqj for j =
0,1,2, . . ., which are given by

c
q

0 = 1,cqj =
(

1−
1+ q
j

)
c
q
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Based on Eq. (1), the solution of a fractional differential
equation given by aD

q
t y(t)= f (y(t), t) is defined as y(tk)=

f (y(tk), tk)hq−
∑k
j=vc

q
j y(tk−j ), where tk = kh, h is the time

step, and v follows the rule

v =

{
1 for k ≤ Lm

h

bk− Lm
h
c for k > Lm

h

, (3)

with Lm being the memory length, which can be set accord-
ing to the required accuracy.

2.2 Model description

Figure 1 describes the finite element rotor model. The rotor
can be divided into common beam elements, including elas-
tic shaft, distributed mass and stiff plate. N nodes and M
plates are contained in the rotor. As seen in Fig. 1, the elastic
modulus, area moment of inertia, shear modulus, Poisson ra-
tio, shaft length, shaft density and shaft cross-sectional area
are represented by E, I , G, µ, L, ρ and A, respectively. For
disc Pi, Jddi, mrpi and Jpdi are equatorial moment of inertia,
disc mass and pole moment of inertia, respectively. Fxi and
Fyi represent the force of the i node, and the moments of the
i node are described by Mxi and Myi . In the coordinate sys-
tem, the position of the elastic center line is decided by the
displacements of x(s, t) and y(s, t); (s, t) angles of x and y
can be used to obtain the orientation of the cross-section.

Now the equation of rigid motion is introduced. mp, Jdd,
Jpd and ω are set to represent the plate mass, moment of iner-
tia of the Equator, the moment of inertia of the pole and rota-
tional angular velocity of plate, respectively. By Lagrangian
theorem, the equation of rigid motion is given as follows.

(Mtd+Mrd) q̈d−ωGdq̇d =Qd, (4)

where Mtd and Mrd are mass matrix and mass inertia matrix.
Gd is the gyro matrix, and qd = [x,y,φ,ψ] is the general-
ized displacement vector. Qd is generalized external force
vector. Then, Mtd, Mrd and Gd are given:

Mtd =


mp 0 0 0
0 mp 0 0
0 0 0 0
0 0 0 0

 , (5)

Mrd =


0 0 0 0
0 0 0 0
0 0 Jdd 0
0 0 0 Jdd

 , (6)

Gd =


0 0 0 0
0 0 0 0
0 0 0 −Jpd
0 0 Jpd 0

 . (7)

Next, the equation of beam motion is described secondly.
E, G, µ, d , D and L are set as the element modulus of elas-
ticity, the shear modulus, the Poisson ratio, the inner diam-
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Figure 1. Finite element rotor model.

eter, the outer diameter and the length, and then I is calcu-
lated:

I =
π

64

(
D4
− d4

)
. (8)

The cross-sectional area A

A=
π

4

(
D2
− d2

)
. (9)

The effective shear area As

As =
A

10
9

(
1+ 1.6D×d

D2+d2

) . (10)

or

As =
A

7+6µ
6(1+µ)

[
1+ 20+12µ

7+6µ

(
D×d

D2+d2

)2
] . (11)

Shear deformation coefficient φs

φs =
12EI
GAsL2 . (12)

For a beam element, two nodes, 8 degrees of freedom, and
8 degrees of freedom are contained. Then the cross-sectional
displacement of the unit as a function of time can be seen as a
function of the position along the axis of the unit. Therefore,
the generalized displacement of the unit endpoint with time
change can be described by

qe(t)=
[
q1e q2e q3e q4e q5e q6e q7e q8e

]T
. (13)

According to Lagrange theorem, the equation of motion of
the beam is as follows:

(Mte+Mre) q̈e+ (−ωGe) q̇e+ (Kbe−Kce)qe =Qe, (14)

where Qe is the generalized external force vector, Mte and
Mre are mass matrix and mass inertia matrix, Ge is gyro ma-
trix, Kbe is shearing stiffness matrix, and Kae is the unit ten-
sile stiffness matrix. The corresponding calculation process

is given in Eqs. (19)–(24).

Mte =
ρL

(1+φs)2

·



Mt1 0 0 Mt4 Mt3 0 0 −Mt5
0 Mt1 −Mt4 0 0 Mt3 Mt5 0
0 −Mt4 Mt2 0 0 −Mt5 Mt6 0
Mt4 0 0 Mt2 Mt5 0 0 Mt6
Mt3 0 0 Mt5 Mt5 0 0 −Mt4

0 Mt3 −Mt5 0 0 Mt1 Mt4 0
0 Mt5 Mt6 0 0 Mt4 Mt2 0
−Mt5 0 0 Mt6 −Mt4 0 0 Mt2


, (15)
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+

7
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1
3
φ2

s ,
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(
1
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+

1
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φs+

1
120

φ2
s

)
L2,
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9
70
+

3
10
φs+

1
6
φ2

s ,

Mt4 =

(
11

210
+

11
120

φs+
1

24
φ2

s

)
L,

Mt5 =

(
13

420
+

3
40
φs+

1
24
φ2

s

)
L,

Mt6 =−

(
1

140
+

1
60
φs+

1
120

φ2
s

)
L2, (16)

Mre =
ρL

(1+φs)2

( rρ
L

)2

·



Mr1 0 0 Mr4 −Mr1 0 0 Mr4
0 Mr1 −Mr4 0 0 −Mr1 −Mr4 0
0 −Mr4 Mr2 0 0 Mr4 Mr3 0
Mr4 0 0 Mr2 −Mr4 0 0 Mr3
−Mr1 0 0 −Mr2 Mr1 0 0 −Mr4

0 −Mr1 Mr4 0 0 Mr1 Mr4 0
0 −Mr4 Mr3 0 0 Mr4 Mr2 0
Mr4 0 0 Mr3 −Mr4 0 0 Mr2


, (17)

Mr1 =
6
5
, Mr2 =

(
2
15
+

1
6
φs+

1
3
φ2

s

)
L2,

Mr3 =

(
−

1
30
−

1
6
φs+

1
6
φ2

s

)
L2, Mr4 =

(
1
10
−

1
2
φs

)
L,

rρ =

√
I

A
, (18)

Ge =
ρ

15L

(
rρ

1+φs

)2

·



0 −G1 G2 0 0 G1 G2 0
G1 0 0 G2 −G1 0 0 G2
−G2 0 0 −G4 G2 0 0 G3

0 −G2 G4 0 0 G2 −G3 0
0 G1 −G2 0 0 −G1 −G2 0
−G1 0 0 −G2 G1 0 0 −G4
−G2 0 0 G3 G2 0 0 −G4

0 −G2 −G3 0 0 G2 G4 0


, (19)
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G1 = 36, G2 = 3L− 15Lφs,

G3 = L
2
+ 5L2φs− 5L2φ2

s ,

G4 = 4L2
+ 5L2φs+ 10L2φ2

s , (20)
Kbe =

EI

L3

·



Kb1 0 0 Kb4 −Kb1 0 0 Kb4
0 Kb1 −Kb4 0 0 −Kb1 −Kb4 0
0 −Kb4 Kb2 0 0 Kb4 Kb3 0
Kb4 0 0 Kb2 −Kb4 0 0 Kb3
−Kb1 0 0 −Kb2 Kb1 0 0 −Kb3

0 −Kb1 Kb4 0 0 Kb1 Kb4 0
0 −Kb4 Kb3 0 0 Kb4 Kb2 0
Kb4 0 0 Kb3 −Kb4 0 0 Kb2


, (21)

Kb1 =
12

1+φs
; Kb2 =

4+φs

1+φs
L2
;

Kb3 =
2−φs

1+φs
L2
; Kb4 =

6
1+φs

L, (22)

Kae =
H

30L(1+φs)2

·



Ka1 0 0 Ka4 −Ka1 0 0 Ka4
0 Ka1 −Ka4 0 0 −Ka1 −Ka4 0
0 −Ka4 Ka2 0 0 Ka4 Ka3 0
Ka4 0 0 Ka2 −Ka4 0 0 Ka3
−Ka1 0 0 −Ka4 Ka1 0 0 −Ka4

0 −Ka1 Ka4 0 0 Ka1 Ka4 0
0 −Ka4 Ka3 0 0 Ka4 Ka2 0
Ka4 0 0 Ka3 −Ka4 0 0 Ka2


, (23)


Ka1 = 36+ 60φs+ 30φ2

s ,

Ka2 = 4L2
+ 5L2φs+ 2.5L2φs,

Ka3 =−
(
L2
+ 5L2φs+ 2.5L2φs

)
,

Ka4 = 3L.

(24)

Finally, the equation of rotor motion is obtained by the equa-
tions of rigid motion and beam as follows:

Msq̈s+ (Cs−ωGs) q̇s+Ksqs =Qs, (25)

whereMs is the system mass matrix,Qs is the system gener-
alized external force vector,Gs is the system gyro matrix, Cs
is the system damping matrix and Ks is the system stiffness
matrix.

2.3 Fractional harmonic response analysis

After the finite element rotor is built, now we conduct frac-
tional harmonic response analysis. Here we assume the Qs
and Cs−ωGs in Eq. (25) to be zero, and the free vibration
can be expressed as the generalized eigenproblem,

(Ks−ω
2Ms)qs = 0, (26)

where ω is the natural frequency and X the mode of vibra-
tion. By Eqs. (8)–(24), the global stiffness matrix Ks and
mass matrix Ms are calculated. Then by Eq. (26), the natural
frequency and mode of plate vibration can be obtained.

Next, the harmonic response analysis is used to solve the
vibration problem. It is a method to determine the structural
response of solid materials towards loads that change ac-
cording to time and can predict the sustained dynamic per-
formance of the system structure by the frequency response
curve. Actually, the essence of harmonic response analysis is

to solve the forced vibration equation of structure. Here, the
equation of forced vibration is given as follows.{
Msq̈s+ (Cs−ωGs) q̇s+Ksqs = F (t)
F (t)= F0 sinωt, (27)

where F (t) is force vector matrix and F0 is the force load
amplitude.

In the view of mechanical engineering, a rotor can be seen
as an energy dissipation system, and the force relies on the
operational process of the system. As known, the fractional
derivative does not depend on the discrete points of fractional
order finite element model, but it does depend on the histor-
ical process. Due to the special nature of fractional deriva-
tive, it has been successfully used to describe the viscoelastic
characteristic of all kinds of systems (Yan et al., 2020). Thus,
this paper also considers the fractional derivative (Dα(∗))
into the modeling of force. Since the fractional order usually
acts on a damping item for a viscoelastic model, a fractional
force model can be written as{
Msq̈s+ (Cs−ωGs)Dαqs+Ksqs = F (t)
F (t)= F0 sinωt. (28)

3 Design optimization of asynchronous motor rotor

No matter what finite element model is established, it is still
essential to discuss the design optimization of the rotor be-
cause the dynamic stiffness and mass of a rotor are the im-
portant factors that affect its working characteristics and load
efficiency. The first-order natural frequency should be made
as high as possible to effectively avoid the resonance region,
and then the high rigidity of the asynchronous motor is re-
quired. While the rigidity of the asynchronous motor is in-
creased, the mass can change. Therefore, it is necessary to
consider rigidity and mass for the design of the asynchronous
motor rotor.

3.1 Optimal design framework

The optimal design is based on the built fractional order fi-
nite element model. Figure 2 describes the optimal progress.
Firstly, the geometric parameters of the motor rotor are used
as design variables. Secondly, the maximized first-order nat-
ural frequency and the lightest quality of the monitor are set
as the optimization objective. Thirdly, the rotor structure of
the motor is confined to a certain space. Finally, we apply in-
telligent algorithms to optimize the geometric parameters of
the asynchronous motor rotor and perform simulation anal-
ysis on the optimized model. The simulation results will be
compared with the previous rotor parameters to verify the
optimal progress.

The establishment of the correct mathematical model is
the key of the optimal design and the relevant parameters
that are needed to discuss in the optimization process. The
detailed process is given as follows:
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Figure 2. Optimization framework of the asynchronous motor rotor.

1. determine the parameter type, initial value and variable
range of the optimized design;

2. establish a parameterized model including design vari-
ables and solution parameters;

3. determine the objective function and its mathematical
expression based on the optimization objective;

4. define the range of the rotor to ensure the movement
range of the design point can be controlled within the
feasible region;

5. check the rationality of the optimization design model
to improve the efficiency and stability;

6. set the initial value, upper and lower bounds of the
variables, optimize operating parameters, and complete
computer programming.

3.1.1 Design variables

This paper uses xi(i = 1,2, . . .,n) to present the deign
variables, and they can be shown by a matrix as x =

[x1,x2, . . .,xn]
T, where x1,x2, . . .,xn are n components of

the vector x. And then Rn is an n-dimensional European
space, which can be generated by the design variables.

The function of the design variable is also called the state
variable, which is used as the constraint of the design value.
In this paper, the rotor mass (m), the first-order frequency (fI)
and the maximum stress (σ ) are selected as state variables,
which can be presented as follows:

y = [y1,y2,y3]
T
= [m,fI,σ ]

T. (29)

According to the definition, Fig. 3 shows the design vari-
ables including the shaft extension L1, the shaft segment

length L2 and the shaft diameter D. Then the optimization
design problem of the motor rotor can be seen as an opti-
mization problem of mathematical model.

3.1.2 Objective function

Objective function can be expressed as F (x). For the asyn-
chronous motor, the rotor optimization design requires high
rigidity and light mass, which can be recognized as multi-
objective optimization problem:{

maxf (x)=maxf (x1,x2)
minm(x)=minm(x1,x2) (30)

– High rigidity. If the high rigidity of the asynchronous
motor rotor is the objective function, the dynamic stiff-
ness of the rotor should be increased as much as pos-
sible. Due to the inevitable error during the assembling
process of the asynchronous motor, it can cause an im-
balance that is dynamically affected by the mass. There-
fore, the dynamic stiffness of the rotor must be suffi-
ciently large. We describe the stiffness by the vibration
amplitude of the rotor under dynamic excitation, and the
dynamic stiffness (K) is K = Fe/A, where Fe is dy-
namic excitation load and A is the corresponding dis-
placement amplitude.

In reality, the dynamic excitation of the rotor is con-
stantly changing. When the changing frequency is far
from the first natural frequency of the rotor, the dy-
namic stiffness and static stiffness are basically the
same; when the changing frequency of the dynamic ex-
citation is close to the first natural frequency of the rotor,
the corresponding displacement amplitude will increase
sharply and resonance will appear. Therefore, in order
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Figure 3. Design variables in the rotor optimization process.

to achieve the high stiffness of the rotor, the first-order
natural frequency of the rotor needed to be increased.
So the relevant structural parameters will be changed,
which make the first-order natural frequency and the dy-
namic stiffness increase simultaneously. Therefore, the
high-stiffness problem can be transformed into the first-
order frequency solution.

– Light mass. The mass of the rotor directly affects its
dynamic unbalance state under high-speed operation.
Therefore, it is required to reduce the rotor mass as
much as possible. In this paper, the mass level is divided
into higher, default and lower, which represents the pri-
ority and importance of the optimal solution. Therefore,
the high-rigidity target is determined as the higher level,
and the light mass is positioned at original level.

3.1.3 Constraint condition

Besides design variables and objective functions, constraint
condition is required, and it can be generally divided
into equality constraint (Eq. 31) and inequality constraint
(Eq. 32).

g(x1,x2, . . .,xn)= 0 (31)

or

h(x1,x2, . . .,xn)≥ h(x1,x2, . . .,xn)≥ 0, (32)

where g(x) and h(x) are the objective function with n-
dimensional vectors. According to the above definition, the
constraint condition in the optimization design of asyn-
chronous motor rotor can be defined that the maximum stress
of the shaft under the torque does not exceed the allowable
stress of the shaft material:

σ (L1,L2,D)≤ [σ ]. (33)

3.2 Optimization algorithms

In order to find the suitable parameters for the design
of the asynchronous motor rotor, this section described a
improved algorithm based on response surface optimiza-
tion(RSO) and named it as accelerated response surface op-
timization (ARSO). Moreover, three algorithms – including
traversal search algorithm (TS), multi-objective genetic al-
gorithm (MOGA) and RSO – are chosen to evaluate the
effectiveness of ARSO. The following sections mainly de-
scribe ARSO, but the other three algorithms (Fang and Xu,
2017; Ponnambalam et al., 2000; Munck et al., 2008) are also
briefly described.

3.2.1 Accelerated optimization algorithm based on
response surface (ARSO)

In order to improve poor generalization ability of traditional
RSO (Ponnambalam et al., 2000), the least squares support
vector machine (LS-SVM) provides a new way of structural
reliability analysis (Deng et al., 2003; Cao et al., 2014) on
RSO. Firstly, the inequality constraint function of SVM is
converted into equality constraint function:

minJ (ω,e)=
1
2
‖ω‖2+

C

2

l∑
i=1

e2
i . (34)

And constraint condition

yi = ω
Tφ(xi)+ b+ ei, i = 1,2, . . ., l, (35)

where ω is the weight vector, C is the penalty factor, ei is
the error, φ is the non-linear function of low-dimensional to
high-dimensional mapping, and b is constant coefficient.

Then the squared error can be weighted to promote robust-
ness:

minJ (ω,e)=
1
2
‖ω‖2+

C

2
vi

l∑
i=1

e2
i . (36)
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And constraint condition

yi = ω
Tφ(xi)+ b+ ei, i = 1,2, . . ., l, (37)

where vi is the weight coefficient. Finally, the new regression
prediction function can be obtained by Lagrangian polyno-
mials:

y(x)=
l∑
i=1

αiK(x,xi)+ b, (38)

where αi is Lagrange multiplier, and K(x,xi) is kernel func-
tion.

It is time-consuming based on the above calculation. The
reason is when (K(x,xi)) is used to construct shape func-
tions, an n× n linear system should be computed for ev-
ery computational point. If m monomials are added, an
(n+m)× (n+m) linear system should be solved. Therefore,
this paper proposes an accelerated optimization based on the
previous works and name it ARSO.

For the LS-SVM based on RSO, kernel function in-
cludes [KT(x)pT(x)] and K−1. The time consumption of
[KT(x)pT(x)] is less than that of K−1 because the compu-
tational complexities are o(n+m) and o((n+m)3), respec-
tively. Every computational point has its own [KT(x)pT(x)]
and is different from the rest, but it may have the same K−1

as the other. Thus, we need a storage place, containing the
public nodes and the corresponding points’ information.

First of all, we construct an Ncom×Ncor matrix S = [sij ].
Ncom×Ncor denotes the number of the computational nodes
and the number of the corresponding points, respectively.
The element S = [sij ] is a δ function.

If the j th row elements are the same as the kth row el-
ements, we confirm the j th and kth Gauss points have the
same kernel functions K(xj ) K(xk). It is a rule, which gives
one-to-one mappings between the two type sets by compar-
ing the rows of S. During the calculation process, the im-
proved method can preset the search area to reduce the num-
ber of repeated matrix inversions. To ensure the algorithm’s
effectiveness, the main parameter settings are shown in Ta-
ble 1.

3.2.2 Three compared algorithms

We select three traditional algorithms to compare. These are
traversal search algorithm (TS), multi-objective genetic al-
gorithm (MOGA) and optimization algorithm based on re-
sponse surface (RSO). TS is to randomly generate a certain
number of sample points according to the design space of
the independent variable and calculate the generated sample
points one by one. MOGA is an algorithm with the char-
acteristics of global random searching and implicit parallel
searching. It simulates the problem-solving process as the
genetic evolution process of biological populations to find
the optimal solution. RSO is an optimization method based
on limited design space. Firstly, a polynomial method is used

Figure 4. Response surface fitted by a quadratic polynomial.

to fit a response surface that is shown in Fig. 4; it is the re-
sponse surface fitted by the quadratic polynomial. Secondly,
all the points on the response surface form a subset of the
design space, which reduces the design space of the entire
optimized design and improves the computational efficiency.

3.3 Optimization processing

3.3.1 Optimal solution

The optimization design problem includes establishing the
model and solving the model. Solving the model is to obtain
the optimal solution. The next step is to analyze and judge
the practicality of the optimal solution and finally determine
the optimal design plan.

Generally, the n design variables can make the objective
function reach the extreme value under the restriction of con-
straints: minf (x)= f (x∗), x ∈X ⊂ Rn

s.t.gu(x∗)≤ 0, u= 1,2, . . .,m
hv(x∗)≤ 0, v = 1,2, . . .,p.

(39)

When the constraint function is a non-convex set or the ob-
jective function is a non-convex function, there may be multi-
ple optimal solutions. The optimal solution obtained is called
a local optimal solution. Only when the set of constraints is a
convex set or the objective function is a unimodal function in
the domain can the obtained local optimal solution be judged
as the global optimal solution.

3.3.2 Modify the original model parameters

Once the final optimization plan is determined, the original
model can be modified according to the parameter values of
the optimal solution, which could improve product perfor-
mance and reduce manufacturing costs.
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Table 1. Main parameter settings.

Parameter setting Definition

Initial samples Not less than 10 times the number of design variables
Every iteration samples Not less than the number of design variables and state variables, not more than the number of initial sample points
Maximum Pareto percentage The ratio of the expected number of Pareto points to the number of samples in each iteration
Maximum iteration The maximum iterations of the entire optimization, the default is 20
Maximum candidate sample A certain number of candidate sample points set by various indicators

Table 2. Modal test results.

Hit point Experiment First-order
Frequency (Hz)

Body side First time 129
Second time 128
Third time 129

Spindle side First time 127
Second time 128
Third time 128

3.3.3 Simulation analysis of optimization scheme

During the initial establishment of the optimal design model,
due to the complexity of the actual problem and the limita-
tions of the mathematical model description, some design pa-
rameters and constraints were simplified. After the final opti-
mization plan is determined, the simplified content should be
added to the fractional finite element model again, and then
the static and dynamic characteristics that are closer to the
actual geometric model can be simulated.

4 Experimental results

In order to verify the correctness of the established frac-
tional model, it is necessary to explore whether its dynamic
response is consistent with the actual asynchronous motor.
Therefore, a modal test of the asynchronous motor percus-
sion method is designed to measure the natural frequency of
the asynchronous motor in a free state. In the experiment, the
asynchronous motor was suspended with a flexible rope to
make it in a free state. The experimental instrument relied on
the German Plufor vibration analyzer Vib Xpert-II. By past-
ing an acceleration sensor on one side of the GM7101 motor,
it was hit with a hammer on the opposite side. The vibration
response of the asynchronous motor can be measured by the
hammering experiment module in Vib Xpert-II. The suspen-
sion mode and sensor arrangement of asynchronous motor
are used in The State Key Laboratory of Automotive Simula-
tion and Control (ASCL). The GM7101 test site is shown in
Fig. 5. Then the modal test results are given in Table 2, and
the comparison between simulation results and experimental
results is given in Table 3.

Figure 5. GM7101 motor test site.

In Table 3, it can be seen that the first-order frequency ob-
tained by the simulation calculation is slightly lower than the
experimental results, and the error may be caused by the fol-
lowing:

1. When the three-dimensional model and finite element
model are established, many simplified principles are
adopted, and many small chamfers, threads, ventilation
ducts and other structures are ignored.

2. The influence of contact stiffness and damping factors
of the contact surface is ignored.

3. Silicon steel entities are used to bringing inevitable er-
rors.

4. The actual bearing has a clearance. The clearance of the
bearing is ignored when the spring structure is used for
equivalent replacement, which causes a deviation in the
modal analysis.

5. The experimental instrument and its installation may
bring a few errors.

6. The boundary condition of the simulation analysis is a
completely free state, but the suspension method used
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Table 3. Comparison between simulation results and experimental
results.

Comparison Simulation Experimental Error
result result

First-order natural 123.5 129 4.26 %
frequency (Hz)

Table 4. Range of design variables.

Design variable Original Upper Lower

Shaft extension L1 (mm) 80 110 70
Shaft extension L2 (mm) 116 126 106
Shaft diameter D (mm) 46 80 20

in the experiment is not easy to achieve the completely
free state.

5 Optimization analysis

This section introduces the optimized settings and analyzes
the optimal results.

5.1 Optimization settings

5.1.1 Design variables

As shown in Table 4, three design variables are defined re-
spectively: the shaft extension L1, the shaft segment length
L2 and the shaft diameter D.

5.1.2 State variables

There are three state variables for the rotor optimization de-
sign problem of asynchronous motors: the mass of the ro-
tor m, the first-order natural frequency f1 and the maximum
stress σ .

5.1.3 Constraint conditions

The maximum bending stress does not exceed the allowable
shear stress, which is σ ≤ 50 MPa.

5.1.4 Objective function

The main goal of the rotor optimization design of the asyn-
chronous motor is to improve the high rigidity of the rotor
but to minimize the rotor mass. Therefore, there are two ob-
jective functions: the first-order natural frequency of the ro-
tor should be as large as possible when it exceeds the fre-
quency corresponding to the maximum speed; the rotor mass
is as small as possible under 10 % reduction of the mass. The
relevant settings of state variables, constraint conditions and
objective function are described in Table 5.

Figure 6. The curve of the harmonic response model.

5.2 Optimization results

As seen in Table 6, it can be found that the optimization re-
sults obtained by the four algorithms are all acceptable. The
first-order natural frequencies obtained by TS and MOGA
are both around 150.4 Hz, which is smaller than 152 Hz,
which was obtained by the RSO and ARSO. Meanwhile,
there are no large differences in the mass obtained by the
four algorithms, but the calculation time of ARSO is the
least compared to the other three algorithms. On the whole,
the proposed ARSO performs better than other algorithms,
and the first-order natural frequency and the lightest mass
are 152.17 Hz and 7.801 kg, respectively.

6 Discussion

6.1 Model validation

According to Eq. (28), modal superposition method is used to
discuss the harmonic response and obtain the modal solution
and mode shape. The frequency range is set to be 0–200 Hz,
and the number of operations is 500; that is, the interval of
each solution is 0.5 Hz. And the simple harmonic exciting
force is added to two vertical directions of the shaft section
on the shaft flywheel rotor. The amplitude is 0.001 N, and the
phase is 0 and 90◦.

The flying wheel is selected as the response surface, and
the maximum displacement response is set as the vertical co-
ordinate and the excitation frequency is set as the horizontal
coordinate. As seen in Fig. 6, the harmonic response simu-
lation curve is obtained. By analyzing the displacement re-
sponse frequency curve, the peak can be found at 123.5 Hz,
which is also the distribution position of the first two natu-
ral frequencies of the system. At this time, the system res-
onates and the response increases sharply, which fulfill the
dynamic characteristics of the system and also prove the ac-
curacy of the natural frequency calculation. Meanwhile, it
can also be seen that the system has a greater vibration re-
sponse when the rotor is operating in the first-order natural
frequency range. After the harmonic response curve crosses
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Table 5. Settings of state variables, constraints and functions.

Design variable Original value Constraint Objective function

Rotor mass m (kg) 9.05 m≤ 8.50 Min
First-order frequency f1 (Hz) 136.80 f1 ≥ 150 Max
Maximum stress σ (MPa) 4.43 σ ≤ 50 –

Table 6. Calculation results of the four algorithms.

Algorithm Time (s) L1 (mm) L2 (mm) D (mm) σ (MPa) m (kg) f1 (Hz)

TS 28813 108.50 106.43 41.34 4.495 7.991 150.24
MOGA 54002 102.72 107.32 40.55 4.486 7.905 150.41
RSO 10206 104.85 104.98 40.78 4.462 7.809 151.93
ARSO 1451 104.93 104.87 40.85 4.461 7.801 152.17

Figure 7. Relationship between objective function and design variables.
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Table 7. The rounding results of the optimal solution.

Design variable Original value Optimal value Rounded value

Shaft extension L1 (mm) 80 104.93 105
Shaft extension L2 (mm) 116 104.87 105
Shaft diameter D (mm) 46 40.85 41

Table 8. Comparison of previous parameters and optimized parameters.

Optimized parameter Original value Optimized value Comparison

First-order natural frequency 136.87 152.17 Increased by 11.2 %
Rotor mass 9.05 7.801 Reduced by 13.8 %

the first-order natural frequency, it shows a downward trend
with the increase of the exciting force frequency; that is, the
disturbance vibration caused by the unbalanced force atten-
uates with the increase of the frequency. Then, the system
enters the normal working range, and its stability is gradu-
ally improved. Moreover, the peak value of the displacement
response of the shafting rotor is about 10−7 and extremely
small. It indicates that the shafting is running well and there
will be no collision between the bearing rotor and the stator.

According to the test results of 129 Hz in Tables 2 and 3, it
can known that the response curve can effectively represent
the real frequency distribution, especially the first natural fre-
quency.

6.2 Design variables discussion

In the optimal phase, it is necessary to choose suitable de-
sign variables. This section discusses the relationship among
those variables and obtains the optimal values.

According to the relationship diagram shown in Fig. 7, the
first three sub-features show that L1 and L2 are not linear
with frequency especially for L1. On the contrary, it can be
found that natural frequency is linear with diameter in the
third sub-figure, where it is consistent with the theoretical
analysis. It is obvious that there is always a linear relation-
ship between mass and length (L1 or L2) from the last three
pictures.

In Table 7, the optimal solution is rounded by being com-
bined with the rationality requirements of the actual structure
of the rotor. The L1 and L2 are close to each other when the
shaft diameter becomes smaller. The numerical results show
that the longer the rotor length is, the higher the natural fre-
quency is. In terms of mass, a smaller diameter can not only
reduce the quality because the mass is proportional to the
square of diameter, but also effectively offset the influence of
length.

According to the above discussion, Table 8 gives the com-
parison between the original values and the optimized re-

sults. It can be seen that the first-order natural frequency is
increased by 11.2 %, and the rotor mass is reduced by 13.8 %.

7 Conclusions

In this paper, the fractional model of the asynchronous motor
rotor was firstly established with a peculiar memory charac-
teristic, and the introduced harmonic response was able to
fit the reality well. Then, we set high rigidity and less mass
as optimization functions and transform them into the prob-
lem of the first-order frequency and mass. In order to find
the optimal parameters, an accelerated optimization method
based on response surface is proposed. Finally, the GM7101
asynchronous motor was selected to evaluate our work. The
experimental results show that the optimized first-order nat-
ural frequency was increased by 11.2 %, and the mass was
reduced by 13.8 %, where they verified the effectiveness and
correctness of the fractional order and harmonic response
analysis and realized the high rigidity and light mass of the
asynchronous motor rotor.

However, an asynchronous motor is a complex system, and
there are many factors that affect its vibration characteris-
tics, such as frame type, ribs, ventilation ducts and so on. To
study more complex asynchronous motors, more influencing
factors will be considered in the future.
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