Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-635-2022
https://doi.org/10.5194/ms-13-635-2022
Research article
 | 
20 Jul 2022
Research article |  | 20 Jul 2022

Stiffness analysis of a 3-DOF parallel mechanism for engineering special machining

Haiqiang Zhang, Jianglong Tang, Changtao Yan, Guohua Cui, Minghui Zhang, and Yan'an Yao

Related authors

Simulation and analysis of a single actuated quadruped robot
Changtao Yan, Kan Shi, Haiqiang Zhang, and Yanan Yao
Mech. Sci., 13, 137–146, https://doi.org/10.5194/ms-13-137-2022,https://doi.org/10.5194/ms-13-137-2022, 2022
Short summary
Multi-objective optimization of a redundantly actuated parallel robot mechanism for special machining
Haiqiang Zhang, Jianglong Tang, Qing Gao, Guohua Cui, Kan Shi, and Yan'an Yao
Mech. Sci., 13, 123–136, https://doi.org/10.5194/ms-13-123-2022,https://doi.org/10.5194/ms-13-123-2022, 2022
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Synthesis
Design and motion analysis of a new wheeled rolling robot
Hui Bian, Zihan Li, and Chang-Qian Meng
Mech. Sci., 15, 431–444, https://doi.org/10.5194/ms-15-431-2024,https://doi.org/10.5194/ms-15-431-2024, 2024
Short summary
Assembly of reconfigurable Bricard-like mechanisms to form a multimode deployable arch
Ruiming Li, Xianhong Zhang, Shuo Zhang, Ran Liu, and Yan-an Yao
Mech. Sci., 14, 387–398, https://doi.org/10.5194/ms-14-387-2023,https://doi.org/10.5194/ms-14-387-2023, 2023
Short summary
Design and error compensation of a 3-degrees-of-freedom cable-driven hybrid 3D-printing mechanism
Sen Qian, Xiao Jiang, Yong Liu, Shuaikang Wang, Xiantao Sun, and Huihui Sun
Mech. Sci., 14, 371–386, https://doi.org/10.5194/ms-14-371-2023,https://doi.org/10.5194/ms-14-371-2023, 2023
Short summary
The evolution and restoration of European vertically arranged mechanical turret clocks before the 17th century
Tsung-Yi Lin and Wen-Feng Lin
Mech. Sci., 13, 933–948, https://doi.org/10.5194/ms-13-933-2022,https://doi.org/10.5194/ms-13-933-2022, 2022
Short summary
Evolution and mechanism configuration synthesis of chamber clocks movement prior to 1700
Tsung-Yi Lin and Wen-Feng Lin
Mech. Sci., 13, 877–897, https://doi.org/10.5194/ms-13-877-2022,https://doi.org/10.5194/ms-13-877-2022, 2022
Short summary

Cited articles

Ali, R., Afshin, T., and Kamali, E. A.: On the stiffness analysis of robotic manipulators and calculation of stiffness indices, Mech. Mach. Theory, 130, 382–402, https://doi.org/10.1016/j.mechmachtheory.2018.08.025, 2018. 
Araujo-Gómez, P., Díaz-Rodríguez, M., and Mata, V.: Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator, J Braz. Soc. Mech. Sci. Eng., 41, 425–433, https://doi.org/10.1007/s40430-019-1934-1, 2019. 
Cao, W. A. and Ding, H.: A method for stiffness modeling of 3R2T over constrained parallel robotic mechanisms based on screw theory and strain energy, Precis. Eng., 51, 10–29, https://doi.org/10.1016/j.precisioneng.2017.07.002, 2017. 
Cao, W. A. and Ding, H. F.: A method for solving all joint reactions of 3R2T parallel mechanisms with complicated structures and multiple redundant constraints, Mech. Mach. Theory, 121, 718–730, https://doi.org/10.1016/j.mechmachtheory.2017.11.015, 2018. 
Cao, W. A., Ding, H. F., and Yang, D. H.: A method for compliance modeling of five degree-of-freedom overconstrained parallel robotic mechanisms with 3T2R output motion, J. Mech. Robot., 9, 1–11, https://doi.org/10.1115/1.4035270, 2017. 
Download
Short summary
To improve the stiffness performance of the parallel mechanism, this paper proposes a novel 3-DOF redundantly actuated 2RPU-2SPR parallel mechanism. What is more, the stiffness model of the parallel mechanism is deduced and the accuracy of the stiffness model is verified through finite-element analysis. Finally, the simulation experiment results demonstrate that the redundantly actuated parallel mechanism has better stiffness performance compared to a traditional 2RPU-SPR parallel mechanism.