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Abstract. There are considerably rigorous requirements for accuracy and stability of the mechanism to accom-
plish large-scale and complex surface machining tasks in the aerospace field. In order to improve the stiffness
performance of the parallel mechanism, this paper proposes a novel three degrees of freedom (DOF) redun-
dantly actuated 2RPU-2SPR (where R, P, U and S stand for revolute, prismatic, universal and spherical joints,
respectively) parallel mechanism. Firstly, the kinematics position inverse solution is derived and a dimensionless
generalized Jacobian matrix is established through the driving Jacobian matrix and constraint Jacobian matrix.
Secondly, the stiffness model of the parallel mechanism is deduced and the accuracy of the stiffness model is
verified through finite-element analysis. Using eigenscrew decomposition to illustrate the physical interpreta-
tion of the stiffness matrix, the stiffness matrix is equivalent to six simple screw springs. Finally, the simulation
experiment results demonstrate that redundantly actuated parallel mechanism has better stiffness performance
compared to the traditional 2RPU-SPR parallel mechanism.

1 Introduction

In the field of industrial manufacturing, the processing equip-
ment with the parallel mechanism has been widely used
and researched because of its excellent performance. Tian
et al. (2019) proposed a novel robot leg deformable paral-
lel mechanism with the ability of reconstruction and motion
change based on an innovative rotatable-axis revolute joint.
Araujo-Gómez et al. (2019) carried out kinematic analysis
and size optimization of 2R2T (where R and T stand for rota-
tional and translational degrees of freedom, respectively) par-
allel mechanism. Wu et al. (2014) systematically introduced
and discussed a series of 2-DOF parallel manipulators with
equal–diameter spherical pure rotation. Three-DOF parallel
mechanism is one of the most noticeable and widespread
mechanisms and Li and Hervé (2010) synthesized a series
of 3-DOF parallel mechanisms. The finite motions of 1T2R

parallel mechanisms with parasitic motions were described
and analyzed by Sun and Huo (2018) and their topologies
were synthesized. Huang et al. (2019) proposed a simple and
highly visual method for type synthesis of families of over-
constrained parallel mechanisms with one translational and
two rotational motion capabilities. In order to expand the ap-
plication of parallel manipulators, Wu et al. (2018) created
a 5-DOF hybrid machine and a mechatronics model was de-
rived based on this parallel manipulator.

Stiffness design refers to optimization based on a certain
stiffness analysis model with structural parameters as vari-
ables to improve the stiffness performance of the mechanism.
A stiffness synthesis strategy was proposed for the desired
elastic center of a 3-DOF parallel mechanism composed of
3RPR links (Wen et al., 2015). The Exechon parallel mech-
anism with over-constrained kinematic chain has attracted
extensive attention in the research community and its stiff-
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ness has been studied by Zhang et al. (2016). Moosavian
et al. (2016) introduced a method for designing variable ge-
ometry parallel mechanism with enhanced static properties.
Generally, higher stiffness allows greater variable load and
higher precision of the end–effector. There is no unified strat-
egy to establish the stiffness model of the parallel mechanism
and many experts have done relevant research on different
types of parallel mechanisms. A new variable stiffness design
method was proposed to optimize the geometric parameters
of the parallel mechanism by Li et al. (2017). For the heavy-
duty parallel robot manipulator, Wang et al. (2017) proposed
a method to simultaneously optimize the size and structural
parameters and introduced a stiffness performance evalua-
tion index. This stiffness distribution index mainly focuses
on the stiffness components of the manipulator. Moosavian et
al. (2014) introduced a new method to enhance the stiffness
of parallel mechanisms without redundant actuation. Chen
et al. (2018) showed a negative stiffness criterion for active
stiffness using the example of a redundantly actuated planar
parallel mechanism. Ali et al. (2018) also studied the stiffness
of the parallel mechanism. Moreover, the over-constrained
parallel mechanism can also be more widely applied by com-
bining with sliding rail such as the serial parallel hybrid 5-
axis machining machine tool. In order to meet the require-
ments of the large workspace and high dexterity of aerospace
industry processing equipment, Fang et al. (2020) and Jiang
et al. (2021) proposed a new type of series–parallel hybrid
processing robot mechanism. Portman (2020) presented a
new method to define stiffness values for elastic support sys-
tems and demonstrated the effectiveness and generality of
the method with examples of simulated applications. Cao et
al. (2017) summarized a method for modeling stiffness of a
3R2T over-constrained parallel robot mechanism. The pro-
posed method can be conveniently applied to build stiffness
models with high accuracy for 3R2T over-constrained paral-
lel mechanisms. Jiang et al. (2019) designed a 3T2R parallel
mechanism with a large output rotation angle in terms of the
Lie group theory and the integration of configuration, and
analyzed various performance indices of the parallel mecha-
nism.

The commonly used modeling methods at this stage can
be roughly divided into two categories. One is the employ of
some methods such as principle of virtual work, structural
matrix, screw theory or a combination of them. Based on
strain energy analysis and screw theory, Cao et al. (2017)
proposed a systematic approach to a limb stiffness model
that considers the coupling of constrained wrench stiffness
and actuated wrench stiffness, and Sun et al. (2016) pro-
posed a 2-DOF constrained rotating parallel mechanism with
an articulated walking platform and established its stiffness
model. Yan et al. (2016) performed a stiffness analysis using
a strain energy method that considers compliance of the mo-
bile platform. Wu et al. (2022) proposes a novel method to
evaluate the dynamic performance of the robot along joint–
space directions. Furthermore, a new stiffness index is pro-

posed to evaluate stiffness properties. Fang et al. (2002) pro-
posed a comprehensive method of 4-DOF parallel mech-
anism based on the screw theory and summarize a com-
prehensive method of 3R parallel mechanism. Gosselin and
Schreiber (2018) considered two types of redundancy for
parallel mechanisms, namely, actuation redundancy and mo-
tion redundancy. Then, each concept was mathematically
formulated to clearly demonstrate their characteristics and
properties. The other is with the help of commercial soft-
ware. Combined with related theoretical and experimental
research, a finite-element analysis model of mechanism stiff-
ness was derived. A novel method for force analysis of the
over-constrained parallel mechanisms was proposed by Xu
et al. (2015) and the correctness of the proposed method for
force analysis is effectively verified based on Adams simula-
tion software. Zhang et al. (2019) verified the analytical re-
sults of kinematics and dynamics through the co-simulation
solution of Simulink and Recurdyn. Cao and Ding (2018)
proposed a general method for solving 3R2T parallel mech-
anisms with complex structures and multiple redundant con-
straints, and then verified the correctness of the established
stiffness model through finite-element analysis.

The main contribution of this paper is as follows: a novel
redundantly over constrained 2PRU-2SPR parallel mecha-
nism is presented. What is more, the relationship between
the pose of moving platform and external load is derived and
the overall stiffness matrix of the mechanism is obtained. To
have a deeper understanding of the internal structure of stiff-
ness matrix, an eigenscrew decomposition method is utilized
to illustrate the physical interpretation of stiffness matrix that
can be expressed as linear superposition of simple springs
based on the screw decomposition. Finally, the stiffness mod-
eling and analysis methods are effective and correct after
proving by finite-element software analysis, and the stiffness
performances are compared with the traditional 2RPU-SPR
parallel mechanism.

2 DOF analysis of 2RPU-2SPR parallel mechanism

2.1 Configuration of 2RPU-2SPR parallel mechanism

In order to meet the processing requirements of large com-
plex special-shaped workpiece, an over-constrained 2RPU-
2SPR redundantly actuated parallel mechanism is applied
to the machine tool equipment combined with the charac-
teristics of parallel mechanism and the purpose of machin-
ing complex curved surface. The over-constrained parallel
mechanism not only has the characteristics of parallel mech-
anism but also has the advantages of high stiffness, high pre-
cision, strong carrying capacity and avoiding singularity. Wu
et al. (2013) revealed the relationship between the stiffness
performance index of the parallel manipulator and its natural
frequency through the study of a 3-DOF parallel manipulator.
And the simulation results demonstrate that additional redun-
dant legs can increase the natural frequency of the parallel
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Table 1. Relevant concepts associated with stiffness analysis of parallel mechanism.

Research topics Research significance Authors

Configuration synthesis of
parallel mechanisms

Expand the design theory and application of
parallel mechanism to better meet the task
requirements.

Tian et al. (2019), Araujo-Gómez et al. (2019), Wu
et al. (2018), Li et al. (2017), Sun et al. (2016),
Huang, et al. (2019)

Stiffness standards for different
application

According to specific application require-
ments, more reasonable standards are de-
signed to maximize the processing quality.

Wen et al. (2015), Zhang et al. (2016),
Li et al. (2017), Cao et al. (2017), Wang et al. (2017)

Stiffness modeling and analysis
methods

Enhance the anti-deformation ability of the
mechanism and improve the movement ac-
curacy and stability.

Sun et al. (2016), Wu et al. (2013), Gosselin and
Schreiber (2018), Fang et al. (2020)

Stiffness analysis of a 3-DOF
parallel mechanism for engi-
neering special machining

Facing the requirements of complex sur-
face machining tasks, a parallel mechanism
with good stiffness performance is pro-
posed. Stiffness model is constructed and
the physical meaning was explained.

Author’s work

mechanism and improve the stiffness performance. As shown
in Fig. 1, the 2RPU-2SPR parallel mechanism is mainly com-
posed of a fixed platform, a moving platform, an end effector,
and two joints of actuated branches with identical structures
and symmetrically arranged. The fixed platform is connected
with the moving platform through the two joints of actuated
branches. One joint of branches is RPU moving branch chain
including a revolute joint, a prismatic joint and a universal
joint. The other joints of branches are SPR moving branches
including a spherical joint, a prismatic joint and a revolute
joint.

As shown in Fig. 2, the coordinate system is established on
the structure diagram of the over-constrained parallel mech-
anism so as to facilitate the later modeling and optimization
calculation. With B as the center, a fixed coordinate system
B-xyz is established on the mechanism baseB1B2B3B4 in
which the directions of the x axis and y axis are coincident
to BB1 and BB2, and the direction of the z axis is deter-
mined according to the right-hand rule. The coordinate sys-
tem A-uvw attached moving platform A1A2A3A4 is estab-
lished with origin A as the geometric center of mechanism,
and the directions of the u axis and v axis on the coordi-
nate system are coincident to AA1 and AA2, and the w axis
is determined according to the right-hand rule. sij indicates
the direction of the rotation axis or the movement axis of the
kinematic joints.

2.2 Degree of freedom analysis

According to the screw theory, the constraint force and con-
straint moment on each kinematic branch chain do no work
on the center of the moving platform, that is,{
Fci ·f i · v+Fci ·

(
(ai − li)×f i

)
·w = 0 (i = 1,3)

Fci ·f i · v+Fci ·
(
ai ×f i

)
·w = 0 (i = 2,4) (1)

Figure 1. Five-axis linkage processing equipment.

Tci · τ i ·w = 0 (i = 2,4), (2)

where Fci (i = 1, 2, 3, 4) is the constraint force on each
branch, f i is its direction vector, v and w are the axis di-
rections of the A–uvw coordinate system, li is the direction
vector of the driving limb, ai is the joint vector in the fixed
coordinate system, and Tci is the constraint moment on two
and four branches whose direction vector is τ i .

Equations (1) and (2) are written into matrix form and the
relationship between constraints is as follows:

Jc

[
v

w

]
=

 f Ti
(
(ai − li)×f i

)T
f Ti ai ×f

T
i

0T3×1 τTi

[ v

w

]
= 0. (3)
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Figure 2. 2RPU-2SPR parallel mechanism.

Jc is the constrained Jacobian matrix and the specific ele-
ments are as follows:

Jc =



f T1
(
(a1− l1)×f 1

)T
f T2 a2×f

T
2

f T3
(
(a3− l3)×f 3

)T
f T4 a4×f

T
4

0T3×1 τT2
0T3×1 τT4


. (4)

It is known that the Kutzbach degree of freedom calcula-
tion formula is as follows:

F = d(n− g− 1)+
g∑
i=1

fi + v− ς, (5)

where F represents the degree of freedom of the mechanism,
n represents the number of mechanism components, g repre-
sents the number of kinematic joints, d = 6−λ represents the
order of the mechanism, fi represents the degree of freedom
of the i kinematic joint, v represents the redundant constraint
of the mechanism and ς represents the local degree of free-
dom.

Since there is neither constraint couple with the same di-
rection nor coaxial constraint force in the constraint screw of
the mechanism, the mechanism has no common constraint,

i.e., λ= 0. Since the mechanism has no local degrees of free-
dom, i.e., ς = 0, it is easy to know from Eq. (4) that the con-
strained Jacobian matrix Jc has three linearly independent
terms so the mechanism has three redundant constraints, i.e.,
v = 3. It can be seen from the mechanism diagram that the
number of mechanism member n, kinematic joints g and rel-
ative degrees of freedom of all motion joints fi are 10, 12
and 18, respectively.

The degree of freedom of the parallel mechanism can be
obtained by substituting Eq. (5):

F = 6× (10− 12− 1)+ 18+ 3− 0= 3. (6)

The parallel mechanism studied in this paper has three de-
grees of freedom which can rotate around two axes and move
along one axis, namely, x axis, v axis and z axis, respectively.
It is worth noting that the number of actuating joints of the
parallel mechanism is four, resulting in the number of actu-
ating joints of the parallel mechanism being greater than the
number of DOF. Therefore, the mechanism is a redundantly
actuated over-constrained parallel mechanism.

3 Kinematic analysis of parallel mechanism

3.1 Position inverse solution

Set R as the rotation matrix of the moving coordinate system
relative to the fixed coordinate system:

R= R (γ,z)R (β,y)R (α,x)

=

 cβcγ sαsβcγ − cαsγ cαsβcγ + sαsγ

cβsγ sαsβsγ + cαcγ cαsβsγ − sαcγ

−sβ sαcβ cαcβ

 , (7)

where R (γ,z) represents rotation around z axis for γ ,
R (β,y) represents rotation around y axis forβ and R (α,x)
represents rotation around x axis for α. Symbol c represents
cos and s represents sin which will not be repeated later.

Assuming that the moving platform A1A2A3A4 and the
fixed platform B1B2B3B4 are squares with circumscribed
circle radii of ra and rb, respectively, the equation of AiBi
vector in B-xyz is established by using the closed vector
method as follows:

li = p+ ai − bi, (8)

where p =
[
x y z

]T represents the position vector of
the origin A of the moving platform coordinate system in
the fixed coordinate system B-xyz, ai and bi are the posi-
tion vectors of Ai and Bi hinge points in the fixed coordinate
system, respectively, and their coordinates are respectively
expressed as follows:

ai = R
(
racθi rasθi 0

)T
,

bi =
(
rbcθi rbsθi 0

)T (i = 1,2,3,4), (9)

Mech. Sci., 13, 635–645, 2022 https://doi.org/10.5194/ms-13-635-2022



H. Zhang et al.: Stiffness analysis of a 3-DOF parallel mechanism 639

where θi =
(i−1)π

2 (i = 1,2,3,4).
The inverse position solution of Eq. (8) can be expressed

as follows:

li = ‖p+ai−bi‖ (i = 1,2,3,4). (10)

Equation ‖. . .‖ represents the Euclidean norm of the driving
limb.

Due to the introduction of the rotating joint R, four con-
straint equations can be obtained, namely,{

(p− bi)T ·R
(

0 1 0
)T
= 0 (i = 1,3)

(p+ai)T ·
(

1 0 0
)T
= 0 (i = 2,4)

(11)

Equation (11) is organized as follows:

x = 0, y =−
zsαcβ

sαsβsγ + cαcγ
, γ = arctan

(
sαsβ

cα

)
. (12)

3.2 Jacobian matrix of parallel mechanism

Assuming that the velocity vector of the moving platform
reference point A is v and the angular velocity vector of the
moving platform is w, the hinge point between the driving
limb and the moving platform is Ai and the velocity vector
vai of the hinge point is expressed as follows:

vai = v+ω× ai (i = 1,2,3,4). (13)

Then, the axial speed l̇i along the driving limb li0 can be
expressed as follows:

l̇i = vai · li0 = (v+ω× ai) · li0. (14)

In matrix form, it can be expressed as follows:

l̇i = J0

[
v

w

]
, J0 =

[
Ja
Jc

]
, (15)

where J0 is the generalized Jacobian matrix, Ja is the actu-
ated Jacobian matrix and Jc is the constrained Jacobian ma-
trix of the mechanism.

Combining Eqs. (14) and (15), the generalized Jacobian
matrix J0 of the mechanism can be expressed as follows:

J0 =
[
lTi0 (ai · li0)T

]
. (16)

According to the dual relationship between velocity map-
ping and force mapping, the force mapping relationship be-
tween each branch of the mechanism and the moving plat-
form can be obtained from Eq. (16).

τ = JT0 f , (17)

where τ =
[
F T MT

]T , f =
[
f Ta f Tc

]T . Matrix τ
is the external force F and external torque M acting on the
reference point of the moving platform, and matrix f is the
actuating force f a and constraint force f c on the branch
chain.

4 Stiffness modeling of parallel mechanism

The five-coordinate hybrid machine tool has high require-
ments for the kinematic and static properties of the mech-
anism when performing high-speed milling tasks in the
aerospace field, so the stiffness analysis and optimization de-
sign is the key content that must be considered in the mecha-
nism design.

When constructing the stiffness analytical equation of
2RPU-2SPR over constrained parallel mechanism, it does
not lose generality. Firstly, the moving and fixed platforms of
the parallel mechanism are regarded as ideal rigid bodies and
it is assumed that the deformation of other parts belongs to
the category of linear elasticity and small deformation, ignor-
ing the small deformation of revolute, spherical and univer-
sal joint. The unit actuating force screw and unit constraining
force screw applied each branch at the center point A of the
moving platform are represented by Sai , Sri , and their am-
plitudes are represented by fai , fri , i = 1, 2, 3 and 4, respec-
tively. The unit constraint couple screw and amplitude of the
second and fourth branches to the moving platform are Sτ i ,
fτ i (i = 2, 4) but they can be decomposed into constraining
couple helices along and perpendicular to the limb direction.

4.1 Modeling and analysis of branch stiffness

According to the basic knowledge of material mechanics,
non-rigid parts will produce various deformations under dif-
ferent types of forces, so it is assumed that the tensile defor-
mation of each branch under the driving screw Sai , fai is δai
and the deflection along the binding axis under the wrench
screw Sri , fri is δri . Under the restraining couple screw Sτj ,
fτj , the branches 2 and 4 produce a torsional deformation of
δθi1 along the limb axis li0 and a bending deformation of δθi2
along the direction li0 perpendicular to the limb axis.

The specific relationship between force and deformation
and stiffness coefficient is as follows:

fai = kaiδai,kai =
EA

li
(18)

fri = kriδri,kri =
3EIz
l3i

(19)

fτ iτi li0 = kniδθi1,kni =
GIp

li
(20)

fiτi (e1× li0)= kt iδθi2,kt i =
EIz

li
, (21)

where E is the elastic modulus, A is the cross-sectional area
of the limb, kai is the tensile and compressive stiffness coeffi-
cient of the branch limb, I z is the section moment of inertia,
kri is the bending stiffness coefficient,G is the shear modulus
and I p is the polar inertia, τi = e1× e2, e1 =

(
1 0 0

)T ,

e2 = R
(

1 0 0
)T
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The above formula is expressed in matrix form as follows:[
fai fri fτj

]T
=K0

[
δai δri δθj1 δθj2

]T
(i = 1,2,3,4, j = 2,4) , (22)

where K0 =

 Ka 04×4 04×4
04×4 Kc 04×4
02×4 02×4 Kτ

,

Ka = diag
[
ka1 ka2 ka3 ka4

]
,

Kc = diag
[
kr1 kr2 kr3 kr4

]
.

Kτ =

[
k

τ l20+τ (e1×l20)
k

τ l20+τ (e1×l20)
01×2

01×2
k

τ l40+τ (e1×l40)
k

τ l40+τ (e1×l40)

]
.

4.2 Equivalent stiffness matrix of 2RPU-2SPR parallel
mechanism

According to the above analysis, the elastic deformation vec-
tor generated by the actuating branch and moving platform
under the constraint force and actuating force of each branch
can be expressed as follows:[
δai δri δθj1 δθj2

]T
= Jv1X, (23)

where 1X means the deformation of the end effector,

Jv =

 Ja
Jrc
Jτc

,

Ja =
[
lTi0 (ai × li0)T

]
, Jrc = Jc(1 : 4,1 : 6),

Jτc =


0T3×1 lT20
0T3×1 (e1× l20)T

0T3×1 lT40
0T3×1 (e1× l40)T

 .

Substituting Eqs. (22) and (23) into Eq. (17)

τ = JT0 K0Jv1X. (24)

Then, the stiffness matrix of the parallel mechanism is as
follows:

K= JT0 K0Jv. (25)

5 Stiffness analytical model of 2RPU-2SPR parallel
mechanism

5.1 Linear stiffness and angular stiffness index

If the parameters and pose of the mechanism are given, the
stiffness matrix of the mechanism will be determined and

Table 2. Geometric parameters, configuration parameters and phys-
ical parameters.

Type Parameter Value

Structure ra (mm) 278
rb (mm) 565
li (mm) (750, 1250)

Pose α (radian) 0
β (radian) 0
z (mm) 853

Physical E (Pa) 2.06× 1011

G (Pa) 7.69× 1010

some stiffness indices can be defined to evaluate the stiffness
characteristics of the mechanism. It should be noted that the
parallel mechanism designed in this paper is mainly applied
to the machine tool performing milling operation. Therefore,
the linear stiffness and angular stiffness can be defined as
follows:
kx =K(1,1)
ky =K(2,2)
kz =K(3,3)
kw =K(6,6)

 (26)

kx , ky and kz are the linear stiffness along the x, y and z axis,
respectively; kw is the torsional stiffness about w axis.

According to the structural parameters, position parame-
ters and physical parameters given in Table 2, the stiffness
matrix of the mechanism under this typical posture can be
expressed as follows:

K=


0.3297 0 0 0 0.2719 0

0 0.3297 0 −0.2713 0 −0.0006
0 0 5.8136 0 0 0
0 −0.2713 0 0.2252 0 −0.0005

0.2719 0 0 0 0.2248 0
0 −0.0006 0 −0.0005 0 0.0008

× 108, (27)

where the units of terms are N m−1 for K11, K22 and K33,
and Nm rad−1 for K44, K55 and K66.

5.2 Static stiffness finite-element simulation

In order to testify the correctness and effectiveness of the
stiffness model, finite-element analysis of the parallel mech-
anism is also conducted. The finite-element analysis of the
parallel mechanism is carried out by employing the Ansys
Workbench software. Figure 3a–c show the deformation of
the parallel manipulator under force along the direction of x
axis, y axis and z axis, respectively. Figure 3d is the defor-
mation of the parallel manipulator under the moment about
the direction of z axis.

The results obtained by the analysis calculation and finite-
element analysis are listed in Table 3. Clearly, the results ob-
tained by the finite-element analysis are very consistent with
the results of analysis calculation. FEA is the abbreviation of
finite-element analysis.
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Figure 3. Deformation with force/moment imposed.

Table 3. The results of calculation and finite-element analysis.

Parameter Value of analytic Value of FEA Error percentage

kx (N µm−1) 32.97 31.68 3.9 %
ky (N µm−1) 32.97 30.89 6.3 %
kz (N µm−1) 581.36 578.41 0.5 %
kw × 104 (Nm rad−1) 8 7.86 1.75 %

Under the premise of ignoring the deformation of the kine-
matic joint, the calculation results of the analytical model
and the finite-element analysis model are very similar. The
error of kx is 3.9 %, the error of ky is 6.3 %, the error of kz is
0.5 %, the error of kw is 1.75 % and the error range is within
0.5 %–6.3 %. Therefore, the established analytical model for
the stiffness of the whole machine is effective and can be
used for the study of the static stiffness characteristics of the
parallel mechanism.

Assuming that the dynamic and static platforms are rigid
bodies and ignoring the deformation of the moving pair, the
calculation results of the analytical model and the finite-
element model are very close. Therefore, the established
stiffness analytical model is effective and it can be used for
static stiffness analysis. In addition, the workspace is defined
as−40◦ ≤ α ≤ 40◦,−40◦ ≤ β ≤ 40◦. The anisotropic defor-

mation cloud diagram of the virtual prototype under the ini-
tial pose is depicted in Fig. 4.

5.3 Eigenvalue decomposition of stiffness matrix

Normally, the end deformation 1X is expressed in the axis
coordinate system while the eigenscrew is generally ex-
pressed in the ray coordinate system. In order to ensure the
consistency of coordinate system, the 1 matrix is required
to convert the axis coordinate system to the ray coordinate
system, i.e.,

1=

[
03×3 E

E 03×3

]
, (28)

where E is the identity matrix.

https://doi.org/10.5194/ms-13-635-2022 Mech. Sci., 13, 635–645, 2022
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Figure 4. Stiffness distributions in the workspace when z= 853 mm.

Therefore, the decomposition of the stiffness matrix is
transformed into the decomposition of the K1 matrix, i.e.,

K1e = λe, (29)

where λ and e represent the eigenvalues and eigenvectors of
K1, respectively. So, the stiffness matrix can be expressed
as follows:

K=
6∑

m=1
kmwmw

T
m, (30)

wherewm =
[

nm
ρm×nm+hmnm

]
, hm = 1

2w
T
m1wm, km =

λm
2hm

, em is eigenvector of K1, wm is unit screw of em, hm
represents the pitch of wm, nm is direction vector of wm and
ρm is position vector ofwm relative to the original coordinate
system.

The eigenscrew decomposition is applied to the stiffness
matrix K as described in Eq. (30). By applying matrix trans-
formation for solving the eigenscrew problem, the six eigen
stiffness λm, the eigenscrew pitches hm and the eigenscrew

wm are derived as shown in Eq. (31):

λm = diag
([
−7.1231 7.1231 −1.4493 −1.3614 1.4493 1.3614

])
× 106

hm = diag
([
−0.0135 0.0135 −0.0431 −0.0159 0.0431 0.0159

])
wm =


−0.0780 0.0780 0.1239 0.5842 0.1239 0.5842
0.0096 0.0096 0.9828 −0.0753 −0.9828 0.0753
0.9969 −0.9969 0.1371 0.8081 0.1371 0.8081
0.0090 0.0090 −0.8158 0.0379 0.8158 −0.0379
−0.0644 0.0644 0.0590 0.4852 0.0590 0.4852
−0.0122 −0.0122 −0.003 −0.0019 0.003 0.0019


. (31)

The physical interpretation of stiffness matrix K based on
eigenscrew decomposition is elaborated in Table 4, which in-
dicates that K can be interpreted by six screw springs. The
directions along the eigenscrew of K are shown in Fig. 5. pm
represents the pitch of the screw joint.

It can be seen from Table 4 and Fig. 5 that the stiffness ma-
trix can be equivalent to a simple superposition of six springs.
Six springs can be divided into three groups. Two springs in
each group meet at one point which has the same spring stiff-
ness and the pitches are opposite numbers. Since the mecha-
nism has two branches that are not the same from each other,
the mechanism does not show a certain symmetry and the
resulting spring distribution is not regular.

5.4 Stiffness index at different heights

In order to evaluate the stiffness of some positions in the
workspace, the maximum eigenvalues of the stiffness ma-
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Table 4. Equivalent spring constants.

springs km/× 108 nm ρm pm (−2πhm)

1 2.6401 [−0.0780, 0.0096, 0.9969]T [0.0640, 0.0080, 0.0049]T 0.0848
2 2.6401 [0.0780, 0.0096, −0.9969]T [0.0640, −0.0080, 0.0049]T −0.0848
3 0.1679 [0.1239, 0.9828, 0.1371]T [−0.0084, −0.1118, 0.8091]T 0.2711
4 0.4286 [0.5842, −0.0753, 0.8081]T [−0.3920, 0.0318, 0.2863]T 0.0988
5 0.1679 [0.1239, -0.9828, 0.1371]T [-0.0084, 0.1118, 0.8091]T -0.2711
6 0.4286 [0.5842, 0.0753, 0.8081]T [−0.3920, −0.0318, 0.2863]T −0.0988

Figure 5. Stiffness matrix spring distribution diagram.

Figure 6. Parallel mechanism stiffness surface.

trix K are employed as the evaluation index of the parallel
machine tool.

It can be seen from Fig. 6 that the stiffness values of mech-
anism decrease with the increase of z value and the manipula-
tor approaches singularity when approaching the workspace
boundary. The lowest value of the maximum stiffness ap-

pears near the workspace boundary. Therefore, the minimum
value of stiffness appears near the workspace boundary.

5.5 Stiffness comparison analysis

It is obvious from Fig. 7 that the kinematic performance of
redundantly actuated 2RPU-2SPR parallel mechanism is bet-
ter than traditional 2RPU-SPR parallel mechanism which has
a bright engineering practical prospect. Therefore, the intro-
duction of redundant branch chain can effectively improve
the kinematic performance of 2RPU-SPR parallel mecha-
nism which lays a theoretical foundation for later optimiza-
tion design.

6 Discussions

Taking the 2RPU-2SPR over-constrained parallel mecha-
nism applied to complex surface machining as the research
object, it starts from the mechanism characteristic descrip-
tion and the DOF characteristics. The position mapping rela-
tionship between the input member and the output member
is established and the Jacobian matrix representing the ve-
locity mapping relationship between the input joint and the
output joint of the mechanism is obtained. It is worth not-
ing that the stiffness performance of the parallel mechanism
directly determines the motion accuracy and stability of the
system when the mechanism performs the surface machining
task. Based on the screw theory, the stiffness of the 2RPU-
2SPR over-constrained parallel mechanism is deduced. Then
the eigenscrew decomposition method can be adopted to de-
compose the stiffness matrix.

7 Conclusions

In this study, aiming at the large-scale and complex sur-
face machining tasks in the aerospace field, a novel over-
constrained redundantly actuated parallel mechanism is pro-
posed. Furthermore, the correctness of the derivation of the
stiffness matrix through finite-element simulation analysis is
verified which can be used to study the static stiffness charac-
teristics of the parallel mechanism. Simultaneously, the stiff-
ness matrix is equivalent to three groups of springs with more
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Figure 7. Comparison of maximum stiffness.

definite physical meanings. Finally, compared with the stiff-
ness of the 2RPU-SPR parallel mechanism, the passive over-
constrained parallel mechanism has higher stiffness, indicat-
ing that the introduction of the redundantly actuated over-
constrained branch chain SPR can improve the stiffness per-
formance of the mechanism and can also effectively improve
the stiffness distribution of the mechanism.

In our future research, the mechanism proposed in this
paper has great stiffness performance; it can be connected
with x and y sliding rail to form a five-axis hybrid process-
ing machine tool which has a wider range of applications.
What is more, the theoretical design and analysis proposed
in this paper mainly focus on the parallel mechanism. There
is no complete digital virtual simulation and test prototype
construction for the overall complex surface intelligent pro-
cessing equipment. The control theory is limited to the paral-
lel mechanism and further research is needed on the overall
control of the hybrid mechanism.
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