Articles | Volume 15, issue 1
https://doi.org/10.5194/ms-15-367-2024
https://doi.org/10.5194/ms-15-367-2024
Research article
 | 
28 May 2024
Research article |  | 28 May 2024

Gravity compensation and output data decoupling of a novel six-dimensional force sensor

Yongli Wang, Ke Jin, Xiao Li, Feifan Cao, and Xuan Yu

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Mathematical Modeling and Analysis
Fault identification of the vehicle suspension system based on binocular vision and kinematic decoupling
Hong Wei, Fulong Liu, Guoxing Li, Xingchen Yun, Muhammad Yousaf Iqbal, and Fengshou Gu
Mech. Sci., 15, 445–460, https://doi.org/10.5194/ms-15-445-2024,https://doi.org/10.5194/ms-15-445-2024, 2024
Short summary
Meshing stiffness characteristics of modified variable hyperbolic circular-arc-tooth-trace cylindrical gears
Dengqiu Ma, Bing Jiang, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 395–405, https://doi.org/10.5194/ms-15-395-2024,https://doi.org/10.5194/ms-15-395-2024, 2024
Short summary
A replaceable-component method to construct single-degree-of-freedom multi-mode planar mechanisms with up to eight links
Liangyi Nie, Huafeng Ding, Andrés Kecskeméthy, Kwun-Lon Ting, Shiming Li, Bowen Dong, Zhengpeng Wu, Wenyan Luo, and Xiaoyan Wu
Mech. Sci., 15, 331–351, https://doi.org/10.5194/ms-15-331-2024,https://doi.org/10.5194/ms-15-331-2024, 2024
Short summary
Optimal design and experiments of a novel bobbin thread-hooking mechanism with RRSC (revolute–revolute–spherical–cylindrical) spatial four-bar linkage
Bingliang Ye, Xu Wang, Mingfeng Zheng, Pengbo Ye, and Weiwei Hong
Mech. Sci., 15, 269–279, https://doi.org/10.5194/ms-15-269-2024,https://doi.org/10.5194/ms-15-269-2024, 2024
Short summary
Dynamic modeling and performance analysis of the 2PRU-PUU parallel mechanism
Tianze Sun, Wei Ye, Chao Yang, and Fengli Huang
Mech. Sci., 15, 249–256, https://doi.org/10.5194/ms-15-249-2024,https://doi.org/10.5194/ms-15-249-2024, 2024
Short summary

Cited articles

Cai, D., Yin, H., Chen, L., Xu, Y. D., and Yao, J.: Analysis and design of the multi dimensional force-sensing mechanism based on the capacitive micro-displacement sensing unit, Mach. Des., 37, 43–50, https://doi.org/10.13841/j.cnki.jxsj.2020.12.007, 2020. 
Chao, L. and Chen, K.: Shape optimal design and force sensitivity evaluation of six-axis force sensors, Sensor. Actuat. A-Phys., 63, 105–112, https://doi.org/10.1016/S0924-4247(97)01534-3, 1997. 
Chun, C.: Research on robotic grinding system based on vision and force sense, Qingdao University of Science and Technology, Master thesis, https://doi.org/10.27264/d.cnki.gqdhc.2022.000478, 2022. 
Fan, X., Xu, Y., Zhou, J., and Li, Z.: Application of genetic algorithm and wavelet neural network in ET_0 prediction, Journal of Yanshan University, 43, 182–188, 2019. 
Hou, Y., Yao, J., Lu, L., and Zhao, Y.: Performance analysis and comprehensive index optimization of a new configuration of Stewart six-component force sensor, Mech. Mach. Theory, 44, 359–368, https://doi.org/10.1016/j.mechmachtheory.2008.03.008, 2008. 
Download
Short summary
A new type of parallel six-dimensional force sensor was developed, and artificial neural network technology was used to achieve decoupling of the sensor output data. In addition, a gravity compensation method based on CAD variable geometry is proposed to optimize the performance of the six-dimensional force sensor.