Articles | Volume 10, issue 1
https://doi.org/10.5194/ms-10-35-2019
https://doi.org/10.5194/ms-10-35-2019
Research article
 | 
10 Jan 2019
Research article |  | 10 Jan 2019

Use of mixed coordinates in modeling wind turbines including tubular tower

Ayman Nada and Ali Al-Shahrani

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Mathematical Modeling and Analysis
Research on the optimal speed of vehicles passing speed bumps on the highway based on an immune algorithm
Zhiyong Yang, Ruixiang Zhang, Zihang Guo, Jieru Guo, and Yu Zhou
Mech. Sci., 15, 315–330, https://doi.org/10.5194/ms-15-315-2024,https://doi.org/10.5194/ms-15-315-2024, 2024
Short summary
Improved strategies of the Equality Set Projection (ESP) algorithm for computing polytope projection
Binbin Pei, Wenfeng Xu, and Yinghui Li
Mech. Sci., 15, 183–193, https://doi.org/10.5194/ms-15-183-2024,https://doi.org/10.5194/ms-15-183-2024, 2024
Short summary
A Lie group variational integrator in a closed-loop vector space without a multiplier
Long Bai, Lili Xia, and Xinsheng Ge
Mech. Sci., 15, 169–181, https://doi.org/10.5194/ms-15-169-2024,https://doi.org/10.5194/ms-15-169-2024, 2024
Short summary
Improved flux linkage observer for position estimation of permanent magnet synchronous linear motor
Wenbin Yu, Guolai Yang, Liqun Wang, Darui Lin, and Ahmed Al-Zahrani
Mech. Sci., 15, 99–109, https://doi.org/10.5194/ms-15-99-2024,https://doi.org/10.5194/ms-15-99-2024, 2024
Short summary
Sliding mode control of electro-hydraulic servo system based on double observers
Xiaoyu Su and Xinyu Zheng
Mech. Sci., 15, 77–85, https://doi.org/10.5194/ms-15-77-2024,https://doi.org/10.5194/ms-15-77-2024, 2024
Short summary

Cited articles

Bayoumy, A., Nada, A., and Megahed, S.: Modeling slope discontinuity of large size wind-turbine blade using absolute nodal coordinate formulation, in: Proceedings of the ASME Design Engineering Technical Conference, vol. 6, ASME (IDETC/CIE) 1st Biennial International Conference on Dynamics for Design, Chicago, Illinois, USA, 105–114 https://doi.org/10.1115/DETC2012-70467, 2012a. a
Bayoumy, A., Nada, A., and Megahed, S.: A Continuum Based Three-Dimensional Modeling of Wind Turbine Blades, J. Comput. Nonlin. Dyn., 8, 031004, https://doi.org/10.1115/1.4007798, 2012b. a
Dibold, M., Gerstmayr, J., and Irschik, H.: A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems, J. Comput. Nonlin. Dyn., 4, 021006, https://doi.org/10.1115/1.3079825, 2009. a
Gerstmayr, J.: Strain Tensors in the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation, Nonlinear Dynam., 34, 133–145, https://doi.org/10.1023/B:NODY.0000014556.40215.95, 2003. a
Hansen, M. O., Sørensen, J. N., Voutsinas, S., Sørensen, N., and Madsen, H. A.: State of the art in wind turbine aerodynamics and aeroelasticity, Prog. Aerosp. Sci., 42, 285–330, https://doi.org/10.1016/j.paerosci.2006.10.002, 2006. a
Download
Short summary
This paper studies the effect of the tower dynamics upon the wind turbine model by using mixed sets of coordinates within multibody system approach. The dynamics of wind turbine model is presented based on the floating frame of reference formulation. The mixed coordinates consists of three sets: Cartesian, elastic, and reduced-order modal coordinates for low speed components. Experimental validation has been carried out successfully, and the model can be utilized for design process.