Research article
07 Mar 2016
Research article | 07 Mar 2016
Towards developing product applications of thick origami using the offset panel technique
Michael R. Morgan et al.
Related authors
Origami fold states: concept and design tool
Alex Avila, Spencer P. Magleby, Robert J. Lang, and Larry L. Howell
Mech. Sci., 10, 91–105, https://doi.org/10.5194/ms-10-91-2019,https://doi.org/10.5194/ms-10-91-2019, 2019
Short summary
Related subject area
A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: design, modeling and case studies
Zhanfeng Zhou, Yongzhuo Gao, Lining Sun, Wei Dong, and Zhijiang Du
Mech. Sci., 11, 75–89, https://doi.org/10.5194/ms-11-75-2020,https://doi.org/10.5194/ms-11-75-2020, 2020
Short summary
Synthesis Theory and Optimum Design of Four-bar Linkage with Given Angle Parameters
Lairong Yin, Long Huang, Juan Huang, Peng Xu, Xuejun Peng, and Peng Zhang
Mech. Sci., 10, 545–552, https://doi.org/10.5194/ms-10-545-2019,https://doi.org/10.5194/ms-10-545-2019, 2019
Short summary
Computer-aided synthesis of spherical and planar 4R linkages for four specified orientations
Guangming Wang, Hao Zhang, Xiaoyu Li, Jiabo Wang, Xiaohui Zhang, and Guoqiang Fan
Mech. Sci., 10, 309–320, https://doi.org/10.5194/ms-10-309-2019,https://doi.org/10.5194/ms-10-309-2019, 2019
Short summary
Origami fold states: concept and design tool
Alex Avila, Spencer P. Magleby, Robert J. Lang, and Larry L. Howell
Mech. Sci., 10, 91–105, https://doi.org/10.5194/ms-10-91-2019,https://doi.org/10.5194/ms-10-91-2019, 2019
Short summary
Novel compliant wiper mechanism
Raşit Karakuş and Engin Tanık
Mech. Sci., 9, 327–336, https://doi.org/10.5194/ms-9-327-2018,https://doi.org/10.5194/ms-9-327-2018, 2018
Short summary
Synthesis of PR-/RP-chain-based compliant mechanisms – design of applications exploiting fibre reinforced material characteristics
U. Hanke, E.-C. Lovasz, M. Zichner, N. Modler, A. Comsa, and K.-H. Modler
Mech. Sci., 6, 155–161, https://doi.org/10.5194/ms-6-155-2015,https://doi.org/10.5194/ms-6-155-2015, 2015
Cited articles
Abel, Z., Cantarella, J., Demaine, E. D., Eppstein, D., Hull, T. C., Ku,
J. S., Lang, R. J., and Tachi, T.: Rigid Origami Vertices: Conditions and
Forcing Sets, arXiv.org, math.MG, available at:
http://arxiv.org/abs/1507.01644v1 (last access: 22 July 2015), 2015.
Arora, W. J., In, H. J., Buchner, T., Yang, S., Smith, H. I., and
Barbastathis, G.: Nanostructured Origami
™ 3D
Fabrication and Self Assembly Process for Soldier Combat Systems, Sel. Top.
Electr. Syst., 42, 473–477, 2006.
Bowen, L. A., Grames, C. L., Magleby, S. P., Lang, R. J., and Howell, L. L.:
A Classification of Action Origami as Systems of Spherical Mechanisms,
J. Mech. Design, 135, 111008, https://doi.org/10.1115/1.4025379, 2013.
Bowen, L. A., Baxter, W., Magleby, S. P., and Howell, L. L.: A Position
Analysis of Coupled Spherical Mechanisms Found in Action Origami, Mech. Mach.
Theory, 77, 13–44, 2014.
Chen, Y., Peng, R., and You, Z.: Origami of thick panels, Science, 349,
396–400, https://doi.org/10.1126/science.aab2870, 2015.
Chiang, C. H.: Kinematics of Spherical Mechanisms, Krieger Publishing
Company, Malabar, FL, 2000.
Edmondson, B. J., Lang, R. J., Magleby, S. P., and Howell, L. L.: An Offset
Panel Technique for Thick Rigidly Foldable Origami, Proceedings of the ASME
International Design Engineering Technical Conferences, Buffalo, NY,
18–20 August 2014, DETC2014-35606, 2014.
Edmondson, B. J., Lang, R. J., Morgan, M. R., Magleby, S. P., and Howell,
L. L.: Thick Rigidly Foldable Structures Realized by an Offset Panel
Technique, in: Origami 6, American Mathematical Society, 1, 149–161, 2015.
Evans, T. A., Lang, R. J., Magleby, S. P., and Howell, L. L.: Rigidly
Foldable Origami Twists, in: Origami 6, AMS, 1, 119–130, 2015.
Felton, S., Tolley, M., Demaine, E., Rus, D., and Wood, R.: A method for
building self-folding machines, Science, 345, 644–646,
https://doi.org/10.1126/science.1252610, 2014.
Francis, K. C., Blanch, J. E., Magleby, S. P., and Howell, L. L.:
Origami-like creases in sheet materials for compliant mechanism design, Mech.
Sci., 4, 371–380, https://doi.org/10.5194/ms-4-371-2013, 2013.
Francis, K. C., Rupert, L. T., Lang, R. J., Morgan, D. C., Magleby, S. P.,
and Howell, L. L.: From crease pattern to product: Considerations to
engineering origami-adapted designs, in: Proceedings of ASME 2014
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, 17–20 August 2014, Buffalo, NY, 2014.
Greenberg, H. C., Gong, M. L., Magleby, S. P., and Howell, L. L.: Identifying
links between origami and compliant mechanisms, Mech. Sci., 2, 217–225,
https://doi.org/10.5194/ms-2-217-2011, 2011.
Hoberman, C.: Reversibly expandable structures, US Patent 4,981,732, United
States Patent and Trademark Office, 1991.
Hoberman, C.: Folding Structures Made of Thick Hinged Panels, US 7794019,
United States Patent and Trademark Office, 2010.
Ku, J. S. and Demaine, E. D.: Folding Flat Crease Patterns With Thick
Materials, Proceedings of the ASME International Design Engineering Technical
Conferences, 2–5 August 2015, Boston, MA, DETC2015-48039, 2015.
Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, K., and
Sasaki, M.: Self-deployable origami stent grafts as a biomedical application
of Ni-rich TiNi shape memory alloy foil, Mat. Sci. Eng. A-Struct., 419,
131–137, 2006.
Lang, R.: A computational algorithm for origami design, in: Proceedings of
the twelfth annual symposium on Computational geometry, ACM, 98–105, 1996.
Lang, R. J. and Hull, T. C.: Origami design secrets: mathematical methods for
an ancient art, The Mathematical Intelligencer, 27, 92–95, 2005.
Miura, K.: A note on intrinsic geometry of origami, in: Proceedings of the
First International Meeting of Origami Science and Technology, Ferrara,
Italy, edited by: Huzita, H., 239–249, 1989.
Schenk, M. and Guest, S.: Origami Folding: A Structural Engineering Approach,
in: Origami 5: Fifth International Meeting of Origami Science, Mathematics,
and Education, edited by: Wang-Iverson, P., Lang, R., and Yim, M., CRC Press,
291–304, 2011.
Tachi, T.: Origamizing Polyhedral Surfaces, IEEE T. Vis. Comput. Gr., 16,
298–311, https://doi.org/10.1109/tvcg.2009.67, 2009a.
Tachi, T.: Simulation of Rigid Origami, in: Origami 4: Fourth International
Meeting of Origami Science, Mathematics, and Education, edited by Lang, R.,
A K Peters, Ltd., 175–188, 2009b.
Tachi, T.: Rigid-Foldable Thick Origami, in: Origami 5: Fifth International
Meeting of Origami Science, Mathematics, and Education, edited by:
Wang-Iverson, P., Lang, R., and Yim, M., CRC Press, 253–264, 2011.
Wu, W. and You, Z.: Modelling rigid origami with quaternions and dual
quaternions, P. Roy. Soc. A-Math. Phy., 466, 2155–2174, 2010.
Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, D. A., Walkemeyer, P. E.,
Trease, B. P., Magleby, S. P., and Howell, L. L.: Accommodating Thickness in
Origami-Based Deployable Arrays 1, J. Mech. Design, 135, 111005,
https://doi.org/10.1115/1.4025372, 2013.