Articles | Volume 11, issue 1
https://doi.org/10.5194/ms-11-29-2020
https://doi.org/10.5194/ms-11-29-2020
Research article
 | 
07 Feb 2020
Research article |  | 07 Feb 2020

On the analysis and design of a fully compliant large stroke slider-crank (rocker) mechanism

Çağıl Merve Tanık, Engin Tanık, Yiğit Yazıcıoğlu, and Volkan Parlaktaş

Related authors

Novel compliant wiper mechanism
Raşit Karakuş and Engin Tanık
Mech. Sci., 9, 327–336, https://doi.org/10.5194/ms-9-327-2018,https://doi.org/10.5194/ms-9-327-2018, 2018
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Synthesis
Design and motion analysis of a new wheeled rolling robot
Hui Bian, Zihan Li, and Chang-Qian Meng
Mech. Sci., 15, 431–444, https://doi.org/10.5194/ms-15-431-2024,https://doi.org/10.5194/ms-15-431-2024, 2024
Short summary
Assembly of reconfigurable Bricard-like mechanisms to form a multimode deployable arch
Ruiming Li, Xianhong Zhang, Shuo Zhang, Ran Liu, and Yan-an Yao
Mech. Sci., 14, 387–398, https://doi.org/10.5194/ms-14-387-2023,https://doi.org/10.5194/ms-14-387-2023, 2023
Short summary
Design and error compensation of a 3-degrees-of-freedom cable-driven hybrid 3D-printing mechanism
Sen Qian, Xiao Jiang, Yong Liu, Shuaikang Wang, Xiantao Sun, and Huihui Sun
Mech. Sci., 14, 371–386, https://doi.org/10.5194/ms-14-371-2023,https://doi.org/10.5194/ms-14-371-2023, 2023
Short summary
The evolution and restoration of European vertically arranged mechanical turret clocks before the 17th century
Tsung-Yi Lin and Wen-Feng Lin
Mech. Sci., 13, 933–948, https://doi.org/10.5194/ms-13-933-2022,https://doi.org/10.5194/ms-13-933-2022, 2022
Short summary
Evolution and mechanism configuration synthesis of chamber clocks movement prior to 1700
Tsung-Yi Lin and Wen-Feng Lin
Mech. Sci., 13, 877–897, https://doi.org/10.5194/ms-13-877-2022,https://doi.org/10.5194/ms-13-877-2022, 2022
Short summary

Cited articles

Alqasimi, A., Lusk, C., and Chimento, J.: Design of a linear bistable compliant crank–slider mechanism, ASME J. Mech. Robot., 8, https://doi.org/10.1115/1.4032509, 2016. 
Dao, T. P., and Huang, S. C.: Design and Analysis of Flexible Slider Crank Mechanism, Int. J. Aerosp. Mech. Eng., 8, 836–843, https://doi.org/10.5281/zenodo.1337163, 2014. 
Erkaya, S., Doğan, E., and Şefkatlıoğlu, E.: Analysis of the joint clearence effects on a compliant spatial mechanism, Mech. Mach. Theory, 104, 255–273, 2016. 
Hao, G., Li, H., Nayak, A., and Caro, S.: Design of a Compliant gripper with Multi-mode Jaws, J. Mech. Robot., 10, 031005, https://doi.org/10.1115/1.4039498, 2018. 
Hongzhe, Z., Shusheng, B., and Jıngjun, Y.: A novel compliant linear-motion mechanism based on parasitic motion compensation, Mech. Mach. Theory, 50, 15–28, 2012. 
Download
Short summary
A novel fully compliant slider-crank mechanism with no backlash property is presented. Analysis and design approaches for the fully compliant slider-crank mechanism are proposed. A design table displaying stroke, axis drift of the output segment, and critical stresses of compliant segments are presented. Approaches are verified with FEA simulations and experiment.