Articles | Volume 15, issue 2
https://doi.org/10.5194/ms-15-417-2024
https://doi.org/10.5194/ms-15-417-2024
Research article
 | 
09 Jul 2024
Research article |  | 09 Jul 2024

Design and performance analysis of the 4UPS-RRR parallel ankle rehabilitation mechanism

Kan Shi, Zongjia Wang, Changtao Yan, and Zhiwei Wang

Related authors

Design of a rehabilitation mechanism based on linkage mechanisms
Kan Shi, Dongbin Zhang, Haidong Wang, and Ran Wang
Mech. Sci., 16, 729–743, https://doi.org/10.5194/ms-16-729-2025,https://doi.org/10.5194/ms-16-729-2025, 2025
Short summary
Structural analysis of ancient Chinese textile mechanisms
Shi-Wu Li, Kan Shi, Ming-Jie Wang, and Yan-An Yao
Mech. Sci., 13, 625–634, https://doi.org/10.5194/ms-13-625-2022,https://doi.org/10.5194/ms-13-625-2022, 2022
Short summary
Simulation and analysis of a single actuated quadruped robot
Changtao Yan, Kan Shi, Haiqiang Zhang, and Yanan Yao
Mech. Sci., 13, 137–146, https://doi.org/10.5194/ms-13-137-2022,https://doi.org/10.5194/ms-13-137-2022, 2022
Short summary
Multi-objective optimization of a redundantly actuated parallel robot mechanism for special machining
Haiqiang Zhang, Jianglong Tang, Qing Gao, Guohua Cui, Kan Shi, and Yan'an Yao
Mech. Sci., 13, 123–136, https://doi.org/10.5194/ms-13-123-2022,https://doi.org/10.5194/ms-13-123-2022, 2022
Short summary
The method for synthesis of the contact ratio of noncircular bevel gears
Kan Shi, Shuai Lin, and Yan'an Yao
Mech. Sci., 12, 165–172, https://doi.org/10.5194/ms-12-165-2021,https://doi.org/10.5194/ms-12-165-2021, 2021

Cited articles

Bian, H., Liu, Y. H., Liang, Z. C., and Zhao, T. S.: A Novel 2-RRR/UPRR Robot Mechanism for Ankle Rehabilitation and Its Kinematics, Robot, 32, 6–12, https://doi.org/10.3724/SP.J.1218.2010.00006, 2010. 
Blaya, J. A. and Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait, IEEE Trans. Neural Syst. Rehabil. Eng., 12, 24–31, https://doi.org/10.1109/TNSRE.2003.823266, 2004. 
Boian, R. F., Bouzit, M., Burdea, G. C., and Deutschet, J. E.: Dual Stewart platform mobility simulator, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004, 4848–4851, https://doi.org/10.1109/IEMBS.2004.1404341, 2004. 
Cheng, Z. M., Yin, T., Pan, H., Zhao, C., Yan, S. Q., Li, Y. W., and Huang, Z.: A 3-DOF parallel ankle rehabilitation mechanism, J. Mech. Eng., 56, 70–78, https://doi.org/10.3901/JME.2020.21.070, 2020. 
Choi, H. S., Lee, C. H., and Baek, Y. S.: Design and Validation of a Two-Degree-of-Freedom Powered Ankle-Foot Orthosis with Two Pneumatic Artificial Muscles, Mechatronics, 72, 102469, https://doi.org/10.1016/j.mechatronics.2020.102469, 2020. 
Download
Short summary
In order to lessen the impact on the team of rehabilitation practitioners and provide patients with a higher-quality rehabilitation process, an ankle rehabilitation robot based on a parallel mechanism is proposed. The feasibility of the ankle rehabilitation robot proposed in this paper is proven by analysis, which lays a foundation for future human–machine experiments. It can act as a reference for future research of the ankle rehabilitation mechanism.
Share