Articles | Volume 4, issue 2
https://doi.org/10.5194/ms-4-345-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/ms-4-345-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
New empirical stiffness equations for corner-filleted flexure hinges
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira, Taipa, Macao SAR, China
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira, Taipa, Macao SAR, China
School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
J. Xu
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomas Pereira, Taipa, Macao SAR, China
Related authors
Qiaolian Xie, Qiaoling Meng, Wenwei Yu, Rongna Xu, Zhiyu Wu, Xiaoming Wang, and Hongliu Yu
Mech. Sci., 14, 159–170, https://doi.org/10.5194/ms-14-159-2023, https://doi.org/10.5194/ms-14-159-2023, 2023
Short summary
Short summary
This paper presents a novel soft bionic elbow exoskeleton based on shape metal alloy (SMA) actuators (Sobee-SMA). The exoskeleton adopts a bionic design, combining active deformation material SMA and high elastic material rubber band to simulate the contraction and relaxation of the elbow skeletal muscle. According to the static analysis of the human–exoskeleton coupling model and experiments, the exoskeleton provides elbow-assisted motion and ensures the safety of the thermal heating process.
Qiaoling Meng, Yiming Yue, Sujiao Li, and Hongliu Yu
Mech. Sci., 13, 675–685, https://doi.org/10.5194/ms-13-675-2022, https://doi.org/10.5194/ms-13-675-2022, 2022
Short summary
Short summary
This paper proposes a novel EMG-based motion compensation controller in active training control to improve patients’ active participation. After proposing an upper limb rehabilitation robot and doing the path plan, the EMG compensation experiments and the active training control experiment are done to prove that the method can control the robot in providing auxiliary force according to patients’ motion intents. The robot can guide the patients in implementing reference tasks in active training.
Qiaoling Meng, Mingpeng Jiang, Zongqi Jiao, and Hongliu Yu
Mech. Sci., 13, 1–13, https://doi.org/10.5194/ms-13-1-2022, https://doi.org/10.5194/ms-13-1-2022, 2022
Short summary
Short summary
This paper proposes a bionic, multi-posture wheelchair, based on the proposed human–wheelchair coupling model, according to the movement characteristics and requirements. The two key factors in designing the multi-posture wheelchair, the consistency of the motion center and the compensation of the shifting center of gravity, are analyzed in this paper. The novel multi-posture wheelchair can implement the sit-to-lie and sit-to-stand transformations with a maximum slipping distance of 10.5 mm.
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021, https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Short summary
This paper proposes a new 13 degrees of freedom equivalent kinematic model for the human upper limb and fully considers the movement characteristics of human upper limbs in anatomy. The proposed model can be utilized to analyze the human upper limb workspace and joint motions. Furthermore, the model can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.
Qiaoling Meng, Zongqi Jiao, Hongliu Yu, and Weisheng Zhang
Mech. Sci., 12, 639–648, https://doi.org/10.5194/ms-12-639-2021, https://doi.org/10.5194/ms-12-639-2021, 2021
Short summary
Short summary
This paper proposes a novel, 4 degrees of freedom, end-effector-based upper limb rehabilitation robot with space training. The robot can assist the human upper limb in performing rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Different from the desktop-type end-effector-based robot, the proposed robot can provide a wide range of shoulder flexion/extension training and cover the range of movement of the human upper limb.
Xiaoming Wang, Qiaoling Meng, Zhewen Zhang, Jinyue Sun, Jie Yang, and Hongliu Yu
Mech. Sci., 11, 425–436, https://doi.org/10.5194/ms-11-425-2020, https://doi.org/10.5194/ms-11-425-2020, 2020
Qiaolian Xie, Qiaoling Meng, Wenwei Yu, Rongna Xu, Zhiyu Wu, Xiaoming Wang, and Hongliu Yu
Mech. Sci., 14, 159–170, https://doi.org/10.5194/ms-14-159-2023, https://doi.org/10.5194/ms-14-159-2023, 2023
Short summary
Short summary
This paper presents a novel soft bionic elbow exoskeleton based on shape metal alloy (SMA) actuators (Sobee-SMA). The exoskeleton adopts a bionic design, combining active deformation material SMA and high elastic material rubber band to simulate the contraction and relaxation of the elbow skeletal muscle. According to the static analysis of the human–exoskeleton coupling model and experiments, the exoskeleton provides elbow-assisted motion and ensures the safety of the thermal heating process.
Qiaoling Meng, Yiming Yue, Sujiao Li, and Hongliu Yu
Mech. Sci., 13, 675–685, https://doi.org/10.5194/ms-13-675-2022, https://doi.org/10.5194/ms-13-675-2022, 2022
Short summary
Short summary
This paper proposes a novel EMG-based motion compensation controller in active training control to improve patients’ active participation. After proposing an upper limb rehabilitation robot and doing the path plan, the EMG compensation experiments and the active training control experiment are done to prove that the method can control the robot in providing auxiliary force according to patients’ motion intents. The robot can guide the patients in implementing reference tasks in active training.
Qiaoling Meng, Mingpeng Jiang, Zongqi Jiao, and Hongliu Yu
Mech. Sci., 13, 1–13, https://doi.org/10.5194/ms-13-1-2022, https://doi.org/10.5194/ms-13-1-2022, 2022
Short summary
Short summary
This paper proposes a bionic, multi-posture wheelchair, based on the proposed human–wheelchair coupling model, according to the movement characteristics and requirements. The two key factors in designing the multi-posture wheelchair, the consistency of the motion center and the compensation of the shifting center of gravity, are analyzed in this paper. The novel multi-posture wheelchair can implement the sit-to-lie and sit-to-stand transformations with a maximum slipping distance of 10.5 mm.
Qiaolian Xie, Qiaoling Meng, Qingxin Zeng, Hongliu Yu, and Zhijia Shen
Mech. Sci., 12, 661–675, https://doi.org/10.5194/ms-12-661-2021, https://doi.org/10.5194/ms-12-661-2021, 2021
Short summary
Short summary
This paper proposes a new 13 degrees of freedom equivalent kinematic model for the human upper limb and fully considers the movement characteristics of human upper limbs in anatomy. The proposed model can be utilized to analyze the human upper limb workspace and joint motions. Furthermore, the model can effectively evaluate the existing upper limb exoskeleton and provide suggestions for structural improvements in line with human motion.
Qiaoling Meng, Zongqi Jiao, Hongliu Yu, and Weisheng Zhang
Mech. Sci., 12, 639–648, https://doi.org/10.5194/ms-12-639-2021, https://doi.org/10.5194/ms-12-639-2021, 2021
Short summary
Short summary
This paper proposes a novel, 4 degrees of freedom, end-effector-based upper limb rehabilitation robot with space training. The robot can assist the human upper limb in performing rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Different from the desktop-type end-effector-based robot, the proposed robot can provide a wide range of shoulder flexion/extension training and cover the range of movement of the human upper limb.
Xiaoming Wang, Qiaoling Meng, Zhewen Zhang, Jinyue Sun, Jie Yang, and Hongliu Yu
Mech. Sci., 11, 425–436, https://doi.org/10.5194/ms-11-425-2020, https://doi.org/10.5194/ms-11-425-2020, 2020
Zhigang Wu, Yangmin Li, and Min Hu
Mech. Sci., 9, 417–429, https://doi.org/10.5194/ms-9-417-2018, https://doi.org/10.5194/ms-9-417-2018, 2018
Short summary
Short summary
This paper is done based on the research result for my research program. Testing results indicate that the maximal cross coupling of the 2-DOF micro-positioning stage is less than 0.1% under the full workspace with the natural frequency of 348.31Hz. The purpose of all work is to design a compliant mechanism for applying the micro-nano-positioning system. And that this work also extends my research interest in my PhD period.
Bingxiao Ding, Yangmin Li, Xiao Xiao, Yirui Tang, and Bin Li
Mech. Sci., 8, 117–126, https://doi.org/10.5194/ms-8-117-2017, https://doi.org/10.5194/ms-8-117-2017, 2017
Short summary
Short summary
A flexure-based monolithic micro manipulation stage with large workspace is designed and analyzed. The piezoelectric actuators are adopted to drive the manipulation stage. The optimized lever amplifier is integrated into the mechanism in order to compensate the stroke of the piezoelectric actuators. The working range of the manipulation stage along each axis is ± 42.31 μm, ± 48.56 μm, 0–10.28 m rad, respectively.
B. Li, Y. M. Li, X. H. Zhao, and W. M. Ge
Mech. Sci., 6, 57–64, https://doi.org/10.5194/ms-6-57-2015, https://doi.org/10.5194/ms-6-57-2015, 2015
Short summary
Short summary
This paper proposes a modified 3-DOF TPM 3-CRU. The mobility of the mechanism is analyzed based on screw theory. Both inverse and forward position analyses are performed, and the analytical solutions are obtained with respect to these two problems. The proposed TPM has explicit solutions for the inverse and forward kinematics issues. Both the path planning and control problems of the mechanism are very simple. The Jacobian matrix of the mechanism and reachable workspace are obtained.
Related subject area
Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Study on the contact performance of the variable hyperbolic circular arc tooth trace cylindrical gear with installation errors
Multi-robot consensus formation based on virtual spring obstacle avoidance
A miniaturized statically balanced compliant mechanism for on-chip ultralow wide-bandwidth vibrational energy harvesting
Vibration coupling characteristics and grinding force control of an elastic component grinding system
Influence of a walking mechanism on the hydrodynamic performance of a high-speed wheeled amphibious vehicle
An investigation into the micro-geometric tapered-shape surface design of the piston bore of a piston–cylinder interface in an axial piston motor
Synthesis of clearance for a kinematic pair to prevent an overconstrained linkage from becoming stuck
Tooth profile design of a novel helical gear mechanism with improved geometry for a parallel shaft transmission
Instability load analysis of a telescopic boom for an all-terrain crane
Kinematics and control of a cable-driven snake-like manipulator for underwater application
A 2 degrees of freedom united propulsive mechanism for amphibious function inspired by frog's hindlimb
Dynamic characteristics of the gear-rotor system in compressed air energy storage considering friction effects
Denim-fabric-polishing robot size optimization based on global spatial dexterity
A general method for the determination of the instantaneous screw axes of one-degree-of-freedom spatial mechanisms
Mechanism design and parameter optimization of a new asymmetric translational parallel manipulator
Influence of grinding wheel parameters on the meshing performance of toroidal surface enveloping conical worm drive
A new manual wheelchair propulsion system with self-locking capability on ramps
The nonlinear vibrations of orthogonal mechanism of vibrating table in view of friction
Location of unbalance mass and supporting bearing for different type of balance shaft module
Toward force detection of a cable-driven micromanipulator for a surgical robot based on disturbance observer
Inverse dynamics and trajectory tracking control of a new six degrees of freedom spatial 3-RPRS parallel manipulator
Design and analysis of a 3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system
Research on a Hierarchical and Simultaneous Gravity Unloading Method for Antenna Pointing Mechanism
Guaranteed detection of the singularities of 3R robotic manipulators
On the infinitely-stable rotational mechanism using the off-axis rotation of a bistable translational mechanism
Dimensional synthesis of mechanical linkages using artificial neural networks and Fourier descriptors
On the positioning error of a 2-DOF spherical parallel wrist with flexible links and joints – an FEM approach
CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics
Dengqiu Ma, Bing Jiang, Lingli Bao, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 353–366, https://doi.org/10.5194/ms-15-353-2024, https://doi.org/10.5194/ms-15-353-2024, 2024
Short summary
Short summary
The relationship between installation error and contact performance was studied. The tooth surface equation and contact ellipse were deduced, and the imprinting experiment was realized. The tooth contact analysis (TCA) model was developed to investigate the influence of the installation error on the contact area. The formulas of the gap and flexibility matrix were given to develop the loaded TCA (LTCA) model. The influence of the installation error on load distribution was investigated.
Yushuai Fan, Xun Li, Xin Liu, Shuo Cheng, and Xiaohua Wang
Mech. Sci., 15, 195–207, https://doi.org/10.5194/ms-15-195-2024, https://doi.org/10.5194/ms-15-195-2024, 2024
Short summary
Short summary
In this study, we systematically improved the multi-robot formation control algorithm. We employed a virtual spring approach to stabilize formations, enhanced the Velocity Obstacle algorithm to address collisions in dynamic mobility, and introduced a leader for consistency. Simulations with up to 20 robots confirmed our method's suitability for large-scale formation obstacle avoidance. Position error and path length remained stable as robot numbers increased.
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024, https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Short summary
A miniaturized statically balanced compliant mechanism is proposed as a structural solution to effectively lower the working frequencies of vibrational energy harvesters to ultralow levels across a wide bandwidth for practical applications. This mechanism exhibits zero stiffness and zero force within a specific displacement range and stiffness nonlinearity in the overall range. It overcomes the working frequency limit imposed by the size effect, showing great potential application value.
Yufei Liu, Lang Wu, En Lu, and Jinyong Ju
Mech. Sci., 15, 123–136, https://doi.org/10.5194/ms-15-123-2024, https://doi.org/10.5194/ms-15-123-2024, 2024
Short summary
Short summary
This paper investigates the vibration coupling effect and grinding force control of an elastic component grinding system, which is a multi-dimensional coupling system conveying a dynamic interaction between the elastic component and the grinding device during the grinding process. The research results have guiding significance for the vibration control and constant force control of robotic grinding systems for elastic components.
Haijun Xu, Liyang Xu, Yikun Feng, Xiaojun Xu, Yue Jiang, and Xue Gao
Mech. Sci., 14, 277–292, https://doi.org/10.5194/ms-14-277-2023, https://doi.org/10.5194/ms-14-277-2023, 2023
Short summary
Short summary
A high-speed wheeled amphibious vehicle was designed and researched based on computational fluid dynamic (CFD) technology. The results were compared with the corresponding test results for verification. CFD is applied to analyze the influence of the wheel flip angle on the resistance performance, and resistance reduction is explained by the change in wake flow-field of the amphibious vehicle. The wheel well was optimized based on our requirement for the vehicle performance on land and water.
Rui Liu, Yishan Zeng, Min Hu, Huabing Zhu, Changhai Liu, and Lei Wang
Mech. Sci., 14, 259–275, https://doi.org/10.5194/ms-14-259-2023, https://doi.org/10.5194/ms-14-259-2023, 2023
Short summary
Short summary
In order to reduce the energy loss and improve the wear resistance of a piston–cylinder pair in an axial piston motor,an optimized tapered piston bore is designed and applied. A fluid–structure interaction numerical model and a new test rig of the friction force of the piston–cylinder pair are developed. Numerical analysis and experimental results show that the optimized tapered-shape piston bore in an axial piston motor can achieve a significant reduction in leakage flow and friction force.
Jian Qi, Yuan Gao, and Fufu Yang
Mech. Sci., 14, 171–178, https://doi.org/10.5194/ms-14-171-2023, https://doi.org/10.5194/ms-14-171-2023, 2023
Short summary
Short summary
Overconstrained linkages always need fewer links to realize complex motion in a 3D space and are supposed to be great for constructing large deployable structures. However, the strict geometric conditions are hard to use in a complicated 3D environment. In this study, joint clearance is actively introduced to improve the adaptivity of the linkages (with an example given). This work is significant for improving the application of overconstrained linkages in a complicated environment.
Enyi He and Shihao Yin
Mech. Sci., 13, 1011–1018, https://doi.org/10.5194/ms-13-1011-2022, https://doi.org/10.5194/ms-13-1011-2022, 2022
Short summary
Short summary
A novel helical gear mechanism with improved geometry is proposed to reduce transmission errors. For the novel spiral gear mechanism with improved geometry, the maximal contact stresses change more smoothly and have a stronger bearing capacity. The results show that, under the same conditions, the gear in this paper improves the transmission accuracy, and the bearing capacity is also stronger.
Jinshuai Xu, Yingpeng Zhuo, Zhaohui Qi, Gang Wang, Tianjiao Zhao, and Tianyu Wang
Mech. Sci., 13, 991–1009, https://doi.org/10.5194/ms-13-991-2022, https://doi.org/10.5194/ms-13-991-2022, 2022
Short summary
Short summary
A super element of the telescopic boom for an all-terrain crane is proposed, and its geometric nonlinear calculation is realized by the co-rotational (CR) formulation. Considering the cable force, the nonlinear equilibrium equations of the system are established, which are transformed into differential equations, and the load displacement curves of the nodes are obtained. Through the slope ratio of the load displacement curve, the judgment criterion of the instability load is established.
Fufeng Xue and Zhimin Fan
Mech. Sci., 13, 495–504, https://doi.org/10.5194/ms-13-495-2022, https://doi.org/10.5194/ms-13-495-2022, 2022
Short summary
Short summary
To date, most underwater manipulators have been rigid-link structures with a small number of degrees of freedom and have been unable to perform well in confined spaces. Due to their high dexterity and good adaptability to different environments, snake-like manipulators have strong potential for use in complex underwater applications. In this study, a tip-following algorithm is presented to weave through confined and hazardous spaces along a defined path with high efficiency.
Yucheng Tang, Xiaolong Yang, Xiaojin Zhu, Shichao Zhou, Wenbin Zha, Yuxin Sun, and Yulin Wang
Mech. Sci., 13, 437–448, https://doi.org/10.5194/ms-13-437-2022, https://doi.org/10.5194/ms-13-437-2022, 2022
Short summary
Short summary
This paper presents a novel united propulsive mechanism inspired by the frog’s hindlimb. This hybrid mechanism is composed of a planar six-bar linkage, which is designed using homotopy continuation and a spatial four-bar mechanism. The two sub-chains connected on the foot form a closed loop, which decreases the degrees of freedom (DoF) of the foot to 2. The preliminary simulations validate the amphibious function of the designed mechanism.
Xinran Wang, Wen Li, Dongxu Hu, Xingjian Dai, and Haisheng Chen
Mech. Sci., 12, 677–688, https://doi.org/10.5194/ms-12-677-2021, https://doi.org/10.5194/ms-12-677-2021, 2021
Short summary
Short summary
This paper investigates the influence of friction effects on a gear-rotor system in compressed air energy storage (CAES), a new mathematical model of the system is established, and some new vibration characteristics of the gear-rotor system are shown in this paper. The results obtained in this paper will provide a reference for the study and design of a gear-rotor system in CAES.
Wenjie Wang, Qing Tao, Xiaohua Wang, Yuting Cao, and Congcong Chen
Mech. Sci., 12, 649–660, https://doi.org/10.5194/ms-12-649-2021, https://doi.org/10.5194/ms-12-649-2021, 2021
Juan Ignacio Valderrama-Rodríguez, José M. Rico, and J. Jesús Cervantes-Sánchez
Mech. Sci., 11, 91–99, https://doi.org/10.5194/ms-11-91-2020, https://doi.org/10.5194/ms-11-91-2020, 2020
Short summary
Short summary
The paper presents a general procedure to determine the instantaneous rotation center for planar mechanisms, or its kinematical equivalent in the case of spherical or spatial cases, from the velocity analysis of the mechanism. The procedure is based on the theoretical results of the Lie algebra, se(3), of the Euclidean group, together with the Killing and Klein forms. The paper shows that a previous contribution contains fundamental errors and it was done in order to unify the theory.
Yi Yang, Yaqi Tang, Haijun Chen, Yan Peng, and Huayan Pu
Mech. Sci., 10, 255–272, https://doi.org/10.5194/ms-10-255-2019, https://doi.org/10.5194/ms-10-255-2019, 2019
Short summary
Short summary
With the requirement of heavy load for pick-and-place operation, a new 3-DoF asymmetric translational parallel manipulator is invented in this paper. This manipulator is assembled by a kinematic limb with the parallel linear motion elements(PLMEs), and a single loop 2-UPR. Owning to the linear actuators directly connecting the moving and the fixed platforms, this parallel manipulator has high force transmission efficiency, and adapts to pick-and-place operation under heavy load.
Chongfei Huai and Yaping Zhao
Mech. Sci., 10, 199–211, https://doi.org/10.5194/ms-10-199-2019, https://doi.org/10.5194/ms-10-199-2019, 2019
Gaspar Rodríguez Jiménez, David Rodríguez Salgado, Francisco Javier Alonso, and José María del Castillo
Mech. Sci., 9, 359–371, https://doi.org/10.5194/ms-9-359-2018, https://doi.org/10.5194/ms-9-359-2018, 2018
Short summary
Short summary
The present work describes the design and build of a new completely mechanical propulsion system for manual wheelchairs for use in ascending or descending long ramps. The design is characterized by a self-locking mechanism that activates automatically to brake the chair when the user stops pushing. The main component of the propulsion system is a planetary gear train that can self-lock, this means that the user does not need to activate external brakes.
Zharilkassin Iskakov, Kuatbay Bissembayev, and Nutpulla Jamalov
Mech. Sci., 9, 307–325, https://doi.org/10.5194/ms-9-307-2018, https://doi.org/10.5194/ms-9-307-2018, 2018
Short summary
Short summary
• With a large load on the vibrating table, the oscillation of the motor shaft angular velocity and the effect of friction on it are more significant.
• Simulink model of the mechanism was developed for numerical calculations.
• Friction increases the difference between the maximum and minimum values of the angular velocity and the coefficient of non-uniformity of rotation.
• Sliding friction influences the frequency, the maximum and minimum values of the work-table kinematic parameters.
Chan-Jung Kim
Mech. Sci., 9, 259–266, https://doi.org/10.5194/ms-9-259-2018, https://doi.org/10.5194/ms-9-259-2018, 2018
Short summary
Short summary
The conceptual design of balance shaft was very important process as how to locate the unbalance masses and corresponding supporting bearings. In this paper, the optimal conceptual balance shaft model was derived by using proposed objective functions for an inline 3-cylinder engine and an inline 4-cylinder one, respectively. Two kinds of optimal model were derived from simulations and efficient design guidelines was finally explained with design flowchart.
Wenjie Wang, Lingtao Yu, and Jing Yang
Mech. Sci., 8, 323–335, https://doi.org/10.5194/ms-8-323-2017, https://doi.org/10.5194/ms-8-323-2017, 2017
Short summary
Short summary
Force sensing plays an important role in minimally invasive surgery. In this study, a new asymmetric cable-driven type of micromanipulator for a surgical robot was designed, and a joint angle estimator(JAE) was designed based on the dynamical model system. Closed-loop control of the joint angle was carried out by regarding the JAE output as the feedback signal. An external force estimator was designed using a disturbance observer. The experimental results shown the correctness and validity.
Santhakumar Mohan and Burkhard Corves
Mech. Sci., 8, 235–248, https://doi.org/10.5194/ms-8-235-2017, https://doi.org/10.5194/ms-8-235-2017, 2017
Short summary
Short summary
This paper presents the complete dynamic model of a new six degrees of freedom (DOF) spatial 3-RPRS parallel manipulator. Further, a robust task-space trajectory tracking control is also designed for the manipulator along with a nonlinear disturbance observer. To demonstrate the efficacy and show the complete performance of the proposed controller, virtual prototype experiments are executed using one of multibody dynamics software namely MSC Adams.
Bingxiao Ding, Yangmin Li, Xiao Xiao, Yirui Tang, and Bin Li
Mech. Sci., 8, 117–126, https://doi.org/10.5194/ms-8-117-2017, https://doi.org/10.5194/ms-8-117-2017, 2017
Short summary
Short summary
A flexure-based monolithic micro manipulation stage with large workspace is designed and analyzed. The piezoelectric actuators are adopted to drive the manipulation stage. The optimized lever amplifier is integrated into the mechanism in order to compensate the stroke of the piezoelectric actuators. The working range of the manipulation stage along each axis is ± 42.31 μm, ± 48.56 μm, 0–10.28 m rad, respectively.
Guoyong Yang, Hongguang Wang, Jizhong Xiao, Zuowei Wang, and Lie Ling
Mech. Sci., 8, 51–63, https://doi.org/10.5194/ms-8-51-2017, https://doi.org/10.5194/ms-8-51-2017, 2017
Short summary
Short summary
This paper presents a gravity unloading facility to simulate micro-gravity environment of space. The facility unloads the gravity of artificial antenna of satellite and its pointing mechanism to test the performance of the pointing mechanism on the ground. The facility consists of two layers to unload gravity hierarchically and simultaneously while the antenna pointing mechanism consists of two joints. The calculation, simulation and experiments all show the effectiveness of the method applied.
R. Benoit, N. Delanoue, S. Lagrange, and P. Wenger
Mech. Sci., 7, 31–38, https://doi.org/10.5194/ms-7-31-2016, https://doi.org/10.5194/ms-7-31-2016, 2016
Short summary
Short summary
We propose two Interval Analysis based methods to characterize novel robots. Interval analysis theory allows us to consider intervals instead of values, making it possible to use computer algorithms, without the drawback of rounding errors. The first proposed method can isolate chosen interest points and is applied to the characteristic cusp and node points of 3R orthogonal manipulators. The second method encloses the robot available postures, giving complementary information on the novel robot.
G. Hao and J. Mullins
Mech. Sci., 6, 75–80, https://doi.org/10.5194/ms-6-75-2015, https://doi.org/10.5194/ms-6-75-2015, 2015
N. Khan, I. Ullah, and M. Al-Grafi
Mech. Sci., 6, 29–34, https://doi.org/10.5194/ms-6-29-2015, https://doi.org/10.5194/ms-6-29-2015, 2015
Short summary
Short summary
The problem of dimensional synthesis of mechanisms to trace a given closed curve is solved by (a) representation of curve shape using normalized Fourier descriptors and (b) learning the relation between Fourier descriptors and mechanism dimensions by an artificial neural network (ANN). The ANN developed suggests dimensions of a four-bar mechanism with coupler curve of shape similar to the one desired. The dimensions are further refined by optimization.
G. Palmieri
Mech. Sci., 6, 9–14, https://doi.org/10.5194/ms-6-9-2015, https://doi.org/10.5194/ms-6-9-2015, 2015
Short summary
Short summary
This paper deals with an elasto-static analysis of a 2-DOF spherical parallel
wrist where the links and the joints are considered flexible. An FEM approach is used to analyze the problem in a series of configurations of the wrist. The results are elaborated in order to obtain continuous maps of the positioning and orientation errors over the workspace of the machine.
H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut
Mech. Sci., 4, 49–64, https://doi.org/10.5194/ms-4-49-2013, https://doi.org/10.5194/ms-4-49-2013, 2013
Cited articles
Berselli, G.: On designing compliant actuators based on dielectric elastomers, University of Bologna, Ph.D. thesis, 2009.
Chen, G. M., Jia, J. Y., and Li, Z. W.: Right-circular corner-filleted flexure hinges, in: Proceedings of the IEEE International Conference on Automation Science and Engineering, 249–253, 2005.
Dong, W., Du, Z., and Sun, L.: Stiffness influence atlases of a novel flexure hinge-based parallel mechanism with large workspace, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 856–861, 2005.
Dong, W., Sun, L., and Du, Z.: Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints, Precis. Eng., 32, 222–231, 2008.
Du, Y., Chen, G., and Liu, X.: Elliptical-arc-fillet flexure hinges: toward a generalized model for compmonly used flexure hinges, J. Mech. Design, 133, 1–9, 2011.
Howell, L. L.: Compliant Mechanisms, A Wiley-Interscience Publicationb, John Wiley & SONS., INC., 2002.
Howell, L. L. and Midha, A.: A method for the design of compliant mechanisms with small-length flexural pivots, J. Mech. Design, 116, 280–290, 1994.
Ivanov, I. and Corves, B.: Flexure hinge-based parallel manipulators enabling high-precision micro manipulations, Mechanisms and Machine Science, 49–60, 2012.
Li, Y. and Xu, Q.: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator, IEEE T. Robot., 25, 645–657, 2009.
Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2002.
Lobontiu, N. and Garcia, E.: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms, Comput. Struct., 81, 2797–2810, 2003.
Lobontiu, N. and Paine, J. S. N.: Design of circular cross-section corner-filleted flexure hinges for three-dimensional compliant mechanisms, J. Mech. Design, 124, 479–484, 2002.
Lobontiu, N., Paine, J. S. N., Garcia, E., and Goldfarb, M.: Corner-filleted flexure hinges, J. Mech. Design, 123, 346–352, 2001.
Lobontiu, N., Paine, J. S. N., Garcia, E., and Goldfarb, M.: Design of symmetric conic-section flexure hinges based on closed-form compliance equations, Mech. Mach. Theory, 37, 477–498, 2002a.
Lobontiu, N., Paine, J. S. N., O' Malley, E., and Samuelson, M.: Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations, Journal of the International Societies for Precision Engineering and Nanotechnology, 26, 183–192, 2002b.
Lobontiu, N., Garcia, E., Hardau, M., and Bal, N.: Stiffness characterization of corner-filleted flexure hinges, Rev. Sci. Instrum., 75, 4896–4905, 2004.
Ma, H. W., Yao, S. M., Wang, L. Q., and Zhong, Z.: Analysis of the displacement amplification ratio of bridge-type flexure hinge, Sensor. Actuat. A-Phys., 132, 730–736, 2006.
Meng, Q., Berselli, G., Vertechy, R., and Castelli, P. V.: An improved method for design flexure-baesd nonlinear springs, in: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2012-70367, 2012.
Palmieri, G., Palpacelli, M., and Callegari, M.: Study of a fully compliant u-joint designed for minirobotics applications, J. Mech. Design, 134, 1–9, 2012.
Paros, J. M. and Weisbord, L.: How to design flexure hinges, Mach. Des., Nov., 25, 151–156,1965.
Qin, Y., Shirinzadeh, B., Zhang, D., and Tian, Y.: Compliance modeling and analysis of statically indeterminate symmetric flexure structures, Precis. Eng., 37, 415–424, 2013.
Ouyang, P. R., Zhang, W. J., and Gupta, M. M.: Design of a new compliant mechanical amplifier, in: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2005-84371, 2005.
Ragulskis, K. M., Arutunian, M. G., Kochikian, A. V., and Pogosian, M. Z.: A Study of Fillet Type Flexure Hinges and their Optimal Design, Vibr. Eng., 3, 447–452, 1989.
Smith, T. S., Badami, V. G., Dale, J. S., and Xu, Y.: Elliptical flexure hinges, Rev. Sci. Instrum., 68, 1474–1483, 1997.
Tian, Y., Shirinzadeh, B., Zhang, D., and Zhong, Y.: Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis, Precis. Eng., 34, 92–100, 2010a.
Tian, Y., Shirinzadeh, B., and Zhang, D.: Closed-form equations of the filleted V-shaped flexure hinges for compliant mechanism designs, Precis. Eng., 34, 408–418, 2010b.
Trease, B. P., Moon, Y. M., and Kota, S.: Design of large-displacement compliant joints, J. Mech. Design, 127, 788–798, 2005.
Xu, W. and King, T.: Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations, Precis. Eng., 19, 4–10, 1996.
Yin, L. Z. and Ananthasuresh, G. K.: Design of distributed compliant mechanisms, Mech. Based Des. Struc., 31, 151–179, 2003.
Yong, Y. K., Lu, T. F., and Handley, D. C.: Review of circular flexure hinge design equations and derivation of empirical formulations, Precis. Eng., 32, 63–70, 2008.
Zettl, B., Szyszkowski, W., and Zhang, W. J.: On systematic errors of two-dimensional finite element modeling of right circular planar flexure hinges, J. Mech. Design, 127, 782–787, 2005.
Special issue