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This paper investigates the existingffstess equations for corner-filleted flexure hinges. Three
empirical stifness equations for corner-filleted flexure hinges (each fillet radiegyuals to .I; I, the length
of a corner-filleted flexure hinge) are formulated based on finite element analysis results for the purpose of
overcoming these investigated limitations. Three comparisons made with the existing conjgliidiness
equations and finite element analysis (FEA) results indicate that the proposed empificatstequations
enlarge the range of rate of thicknegglfe minimum thickness of a corner-filleted flexure hinge) to length (
t/1 (0.02< t/l < 1) and ensure the accuracy for each empiricéiingss equation under large deformation. The
errors are within 6 % when compared to FEA results.

thasuresh2003. The flexure hinges which are utilized in
connecting the rigid components are regarded as the tradi-

Flexure-based compliant mechanisms (FCMs) are becomin§onal joints in a mechanism, therefore, play a key role in
increasingly popular due to their remarkable advantages sucfealizing the roles of the mechanism. In spite that flexure
as part-count reduction, reduced assembly time, and simplibinges own numerous attractive attributes over traditional
fied manufacturing processes in terms of cost reduction, infigid joints, however, FCMs are not used as widely as rigid-
creased precision and reliability, reduced wear and weightPody mechanisms. The main limitation might be the lack of
and increased performandealmieri et al. 2012 Lobontiy, materials and processing techniques that enable structures
2002 Berselli 2009. In addition, FCMs are the perfect sub- deform considerably with adequate strength. A lot of re-
stitutions of traditional rigid mechanisms, compared to thesearchers putfiorts on changing the shape of flexure hinges
other types of compliant mechanisms. A FCM can not onlyand studying the stiness and stress characteristics of these
transform a traditional rigid mechanism in terms of its func- flexure hinges. So far, the flexure hinges can be classified
tions and structure, but also implement high precision andnto two categories: the primitive flexure hinges, such as cir-
high frequency while the traditional rigid mechanism cannotcular flexure hinges, corner filleted flexure hinges, ellipti-
do. For instance, FCMs are increasingly used in the fields ofal flexure hinges, parabolic flexure hinges, hyperbolic flex-
micro-scale and nano-scale technologies, such as smaller attfe hinges, V" shape flexure hinges, right circular elliptical
high precision positioning devices in automobiles, telecom-flexure hinges, right circular corner-filleted flexure hinges,
munications, medical, biology, optics or computer industriestwo axes flexure hinges, multiple axes flexure hinges, and
(Ma et al, 2006 Ivanov and Corve201Q Yin and Anantha-  the complex flexure hinges such as cross axis flexure hinges,
suresh2003 Lobontiu and Garcig2003 Dong et al, 2008 cartwheel flexure hinges. The shapes of these flexure hinges
2005 Xu and King 1996 Li and Xu, 2009. can be found in the literaturebiéng et al, 2012 Zettl et al,

A FCM relies on the elastic deformation of its connectors, 2005 Chen et al.2005 Lobontiu and Paine2002 Lobontiu
i.e. the flexure hinges, to perform its functions of transmit- €t al, 2002a 2001, 2002, this paper will not present them
ting andor transforming motion and forceYin and Anan- in detail again. Among these flexure hinges, circular flexure
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Corner-filleted flexure hingéa), circular flexure hing€b) and elliptical flexure hingéc).

hinges, elliptical flexure hinges and corner-filleted flexure comparing both the FEA models to the traditional right-
hinges as shown in Fig. 1 are commonly used in FCMs be-<ircular flexure hinges, three useful points were presented in
cause they are simple and easy to contgohith et al, 1997, their conclusions. They revealed that the corner-filleted flex-
Yong et al, 2008. ure hinges are the most accurate in terms of motions relative
This paper addresses the corner-filleted flexure hingesto the elliptical flexure hinges, the elliptical flexure hinges
The stithess characteristics of corner-filleted flexure hingeshave less stress for the same displacement and right circular
with a wide range ot/l are analyzed under fliérent loads  flexure hinges are the fiést. It is worth to note that the mo-
applied at the free-end. The influence introduced by sheartion described here does not mean the precision of rotation.
ing is taken into account during the whole analysigfé&ent  Even though the corner-filleted flexure hinges provide more
ratiost/l are investigated in order to overcome the influenceaccuracy on motion than the elliptical flexure hinges, they
induced by shearing. present less precision in terms of rotation. The deviation of
The remaining sections of this paper are organized aghe rotation center point of a corner-filleted flexure hinges is
follows. Section 2 summarizes simply existing research re-bigger than a circular flexure hinge.
sults and some problems need to be resolved in future about Lobontiu et al.(2001) did a lot of works on the anal-
corner-filleted flexure hinges. In Sect. 3, fifty finite element ysis of corner-filleted flexure hinges. They presented an
analysis models of corner-filleted flexure hinges are built upanalytical approach to corner-filleted flexure hinges in or-
and their static plane stress analysis is simulated. In Sect. 4er to implement corner-filleted flexure hinges used in
three stithess empirical equations are formulated by fitting piezoelectric-driven amplification mechanisms. In this pa-
the FEA results. A comparison of the new results togethemer, closed-form in-plane compliance factor equations were
with the previous results is made to FEA in Sect. 5. In theformulated based on Castigliano’s second theorem. A com-
end, the conclusions are drawn in Sect. 7. parison was made with right circular flexure hinges which
revealed that the corner-filleted flexure hinges are more
bending-compliant and induce lower stresses but less pre-
cise in rotationLobontiu and Pain€002 as well ad obon-

) . tiu et al. (2002a b) also developed the other type of flexure
It can be dated back to 196Baros and Weisborfitstly pre- iy qes by means of the similar approach as corner-filleted

sented the compliance-based approach to symmetric Circlge,, e hinges, for instance, cross-section corner-filleted flex-
lar and right circular flexure hinges by giving the compli- ;e hinges in three-dimensional compliant mechanisms ap-
ance equations ar_ld the approxmaﬁce engineering formUIaBlications, conic-section (circular, elliptical, parabolic and
for these flexure hinges. The analytical approach of monoy, neryygic) flexure hinges. In 2004pbontiu et alproposed
lithic flexure hinges is the landmark in the research of flex- o c1osed-form sfiness equations that can be used to char-
ure hinges. Particularly, the angles and linear deflections pro .teyize the static model and dynamic behavior of single-axis

duced on all three axes are expressed in terms of the COMes,nerfilleted flexure hinges based on Castiliagno's first the-

sponding e_xternal loading. i i orem. The new dfiness equations reflect sensitivity to direct-
Ragulskis et al(1989 analyzed the filleted flexure hinges and cross-bending, axial loading, and torsion. Compared to

by applying the static finite element analysis method in Ordertheir previous works, the resulting equations for thérsgiss

to calculate their compliancesgbontiu et al, 2003). factors are more accurate and completely define the elas-
In the early work ofHowell and Midha(1994), they pre- i response of corner-filleted flexure hinges. No matter how

sented a co_mputer-alded design method to pseudo-rlgld-bod%e previous sfiness equations or the refinedistess equa-
model that mcluded short Iength. beam. A short.length t,’ea"lions were presented by the researchers, these equations can
can be considered as a corner-filleted flexure hinges W|thouE)e valid only under some assumptions. Two main assump-
filleted corners at the junction of flexible part and rigid part. ,ng are that the deflection subject to shearing is negligible

_In 1996,Xu and Kingutilized the topology method to de- ¢, eam_jike structures and the deformations of a flexure
sign a flexure-based amplifier for piezo-actuators. Right C'r'hinge are smalLobontiu and Garci€2003 presented an an-

cular, corner-filleted, and elliptical flexure hinges were a”'alytical model for displacement andftiess calculations of
alyzed by static finite element analysis (FEA) method. By



planar compliant mechanisms with single-axis flexure hingesand large deformation, under only a pure moment on the
relying on the strain energy and Castigliano’s displacemenfree-end.
theorem. Specifically, circular flexure hinges and corner- From the previous works, it can be noted that there are no
filleted flexure hinges as typical symmetric single-axis flex- more accurate design formulas at the stage to estim#te sti
ure hinges are contained in the amplifiers in order to verifynesgcompliances in thex andy directions fort/l > 0.1 and
the deduced dtiness equations. the rotational sttness equation for a vertical force applied at
Du et al.(2011) proposed that a new class of flexure hingesthe free end. Therefore, general empiricafséss equations
named elliptical-arc-fillet flexure hinges, which covers ellip- (namedK,, K, andKy) are formulated in the Sect. 4 based
tical arc, circular-arc-fillet, elliptical-fillet, elliptical, circular, on FEA results to evaluate thefftiess inx andy directions
circular-fillet (in the other words, corner-filleted, the major for a wide range of/I ratios. Also, the rotational empirical
axis equals to the minor axis of the elliptical arc), and right stiffness equation will be presented in this section.
circular flexure hinges together under one set of equations.
The closed-form equations for compliance and precision
matrices of elliptical-arc-fillet flexure hinges were derived
in their works. In consequence, the analytical results were
within 10% error compared to the FEA results and within According to the descriptions aforementioned, there are three
8% error compared to the experimental results. It is worthbasic research approaches to the flexure hinges. The first
to note that the closed-form equations were derived based oane is based on displacement theorem, the second one is
the small-deformation theory. Therefore, these equations cathe pseudo rigid body model (PRBM), and the last one is
be valid only when the deformations of the flexure hinges arethe finite element analysis method. FEA method is used as
small enough, or the thicknesgo lengthl ratios are small a benchmark for calculating the rotationalffstess and the
enough Du et al, 2011). stiffness in thexandy directions for flexures. Also, FEAis an
With the development of FCMs, the refined design equa-important approach to verify these formulas proposed based
tions under small deflections for typical flexure hinges cannoton the first two research methods. The accuracy of these FEA
meet the needs of designers. Large deformation started to baodels was verified by Lobontiu and was with the maximum
a key problem to develop the typical flexure hinges. Never-8 % error compared to three experimental resultshpntiu
theless, the diiness characteristics of flexure hinges underet al, 2004. Therefore, this paper studies thefstess char-
large deformation are complex due to shearing deformationacteristics for corner-filleted flexure hinge with a wide range
Scholars seek to stay away from the problem in the researctof t/I under large deformation by means of FEA.
For instance;Trease et al(2005) proposed a new compli- COMSOL software was used to do with FEA of flexure
ant translational joint in order to overcome the drawbacks ofhinges. Fifty corner-filleted flexure hinge models were gener-
typical flexure hinges such as limited range of motion, axisated by using two-dimensional, plane stress, parametric anal-
drift and df-axis stithess. Compared with the typical flexure ysis, which were moved in the andy directions. The ratio
hinges, however, the new designed joint is compléowell of t/| for these fifty models are.02,0.04,0.06,....,1, respec-
(2002) studied short slender beams under large deformatiotively. Please note that the fillet radius,for each corner-
due to a force or a moment on its free-end. The length offilleted flexure model is specified told in this paper because
the short beam should be much shorter than the length ofhe fillet radiusy, is used in eliminating the stress concentra-
the rigid part, while the flexible part should be more compli- tion at each corner of a hinge. In the work ideng et al.
ant than the rigid part. It signifies that the thickness of the(2012), the rate of /| was investigated and the results indi-
short beam should be much less than its lenggth<(0.1) (as  cated that the minimum stress happened when the ratg of
shown in Fig. 1a). equals to AL under identical material/| rate, and deforma-
Tian et al.presented a dimensionless design graph for cir-tion conditions. The geometry of one of these analysis mod-
cular, corner-filleted and cross flexure hinges, based on finitels is shown in Fig. 2. The modeled corner-filleted flexure
element analysis. The maximum fitiess properties from hinges had a depth of 5mm with a Young’s modul&$ ¢f
different hinges in identical situations were described by thel.135 GPa and a Poisson ratig f 0.33. Triangle element
FEA results. It revealed that a corner-filleted flexure hinge istype is more suitable to model irregular shapes and is cho-
preferred over a circular flexure hinge forfBtess demands sen in this paper to generate the model mesh. Four times re-
in a single direction, while the medium #tiess is a cross fined meshing technique was used to produce automatically
flexure hinge Qin et al, 2013 Tian et al, 20108. refined meshing at parts that high stress concentrations were
In real applications, however, the existed research resultsnost likely to occur in order to increase the analytical ac-
cannot meet some requirements such d@nsts and struc- curacy (see Fig. 3). The analysis of flexure hinges always
ture magnitude (the fferent ratiot/l) determinationMeng is assumed to be cantilever beam. One end is fixed and the
et al.(2012) studied the corner-filleted flexure hinges by syn-other one is free-end. It is easy to figure out that the length
thesizing each kind of situation, i.e. theffdrent ratiot/I of a fixed rigid part cannot be too long because the accu-
racy of the FEA results can be significantly influenced by the
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deformation of this part. On the other hand, the free rigid partThe rotational stfness for corner-filleted here is under the
should keep it rigid in order to ensure the accuracy of the resgndition of a perpendicular force applied at the end. Ac-
sults. Therefore, the FEA models were designed with a shorgording to the data in terms @i and oy read from FEA
rigid part at the fixed end and a long rigid part of the fore- regults, the rotational angles were calculated by means of de-
end as shown in Fig. 2. The research of corner-filleted flexforming geometric relationship. The data shown in Fig. 4a
ure hinges under a pure moment applied at the free-end wag rearranged for sfiness characteristic and the relationship

presented in the previous work. This paper studies corneris ahout rotational sfiness dimensionless design parameter
filleted flexure hinges under a force in th@ry direction. It (K,/Ew) and the rate/l as shown in Fig. 5.

is well known that the accuracy of the FEA results can also |t ig easy to figure out that the dimensionless design pa-
be influenced by the way the point conditions are assigned t9zmeter is nearly a function of the raté. While the devi-
the model. For instance, when a point force inytirection  ation lies at the end of the relationship curve indicates that
is applied at the end point of the whole model, an extra mo-the stitness is related to the deformation. The fourth poly-
ment can be produced in terms of the rotational center pointngmijal, the fifth polynomial, and the sixth polynomial func-
As for the position where force is applied in thelirection,  tions were fitted with fitting target of the norm of the residu-
in this paper, a couple of forces are loaded at the point 1 angys 0614750.613230.61321, respectively, by means of the
point 2, respectively, as shown in Fig. 2. While as for the gata points to formulate empirical rotationalftess equa-
position where force loaded in thedirection, a couple of  tjons. The fitting errors of these fitting functions are shown
forces are applied at the point 3 and point 4. Such loadingn Fig. 6. It can be observed from the figure that the minimum
method can decrease the FEA resullts error. fitting error is produced by the sixth polynomial fitting func-
tion. The maximum fitting error produced by this fitting func-
tion is 2.3474 %. In consequence, the sixth polynomial fitting
function is chosen as the rotationalBtess design equation
From the previous section, FEA models withfdientt/I as shown in Eq. (1) and its cfiieients are shown in Table 1.
ratios, which were set from 0.02 to 1 with an increment of
0.02, were generated in COMSOL software. Forces in termsKy 261 ('E)'
of Fx and Fy, were applied at each model and the corre- Ew 4 I
sponding deformationgix and 6y were read. Figure 4a, b
and c, which shows the relationship between the applied Itis worth to mention that the maximum rotational angle
force, the deformatigdeflection, and the rate dfl, indi-  of these FEA models during their deforming is’2B means
cates that the gfness is increasing with the increasing defor- that the influence about shearing deformation was taken into
mation/deflection and the increasing geometric paramtgter ~ account in the empirical stness equation.
According to the compliangstiffness equations calculated
based on the Castiliagno’s displacement theoreob@ntiu,
2002, the Young's modulusk, and the width of hingew,
are proportional to the sthess around axis and inx, y di-
rections. Therefore, the product of the two parameters ca ; o .
be divided. Such this, the fitiess can be transformed intoa '°" s_tlffness inx direction,K —x/Ew, and the raté/| is shown
dimensionless quantity. The dimensionless design approacﬁI Fig. 7. . .
is very popular in the design of FCMs. In addition, the ra- According to the datax read from FEA results, third,

tio of height to lengtht/I, is an important parameter to the fpurth, ﬁﬁh’_SiXth’ and geyenth degrees of polynomial fgnc-
stiffness. tions were fitted to the fitting target of the norm of the residu-

als, 0.04339, 0.015942, 0.010882, 0.010003, 0.0098163, re-
spectively. Figure 8 shows the fitting errors for each fitting
function. We can figure out from this figure that the min-
imum fitting errors were produced by the seventh degree

1)

By following the similar procedure as the rotationalstess,
Iﬁhe relationship between the dimensionless design parameter
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y direction. Figure 4c is rearranged for ftiess equation iy direction

as shown in Fig. 9. It can be found from this figure that the

| ial functi dih . fitt duced dimensionless design ffitiess parameté{,/Ew also can be
polynomial function and the maximum fitting error produced . 1o 2< o function of the rafe

. S 0 [
by this Tuncthnllfs 0'3.213 /o.hConseqL:Entcliy, the _sevlzgth ?.e However, the deviation which lies on the end part of the
gree %0 ynomia “t’?C lon 'Sﬁ osen aEs ; 'mg’?tsﬂ!;’”_ t55| curve is larger than the rotationalftiess parameter. It indi-
ness design equation as shown in Eq. (2) and itfiictents cates that the dfness iny direction is related to the defor-

are listed in Table 1. mation of the hinge. In this paper, a simple fitting function
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procedure mentioned above, the fitting equation is shown in

Eqg. (4) and its coficients are listed in Table 1. Figure 11

) shows the fitting error together with the fitting error produced

t_he re5|dual_s,_0.0064273, 0‘0064261’ a_md 0.0064261, reSpeBS/ the simple fitting equation. It shows that the maximum

tively. The fitting errors are shown in Fig. 10 that shows the error produced by the complex one is 1.8233 % when the rate

minimum errors were produced by the sixth degree polyno-,_,, - ) "
. : . . t/l is larger than 0.08, while the error is much larger than

mial function and the maximum error is 5.2914 %. Therefore, ' " )

. - . : . _'the one produced by simple fitting equation when the t/te

as for the simple fitting function, the sixth degree polynomial is smaller than 0.08. Therefore, the designer can choose the

function is chosen as the dimensionlesfis#iss iny direc- desian equation écc.ordin o th’e design take

tion design equation as shown in Eq. (3) and itsfitcoents gn eq 9 g

are listed in Table 1.

X

i=0

was chosen at first. The fourth, fifth, sixth degree polyno-
mial function was fitted with the fitting target of the norm of

5 i )
Ko ;)u,(f) (By)l, <2 (4)

It should be noticed that the influence about shearing de-
formation is taken into account in the empiricalfistess
equation.

In order to obtain more accurate fittingfitiess equations,
the displacemendy is taken into account. By following the
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] Stifftness,M,/6, (or its inverse, compliance),/M,) of the
From Sect. 2, there are a lot of researches in the study Ofoner-filleted flexure hinge as mentioned before was calcu-
compliancgstifiness characteristics for corner-filleted flex- |5teq using design equationslafbontiu (2002, Howell and
ure hinges. This paper adopts thefsésgcompliance equa-  \jigha (1994, Du et al.(2011), full and simple equation of
tions proposed byHowell (2002), Lobontiu (2002), Du et \eng et al (2012 and the new empirical equation. Their re-
al. (2011) andMeng et al.(2012) in order to compare o g ts were compared with the FEA results by the simulation
the new empirical sfiness equationHowell and Midha  method used in this paper. A corner-filleted flexure hinge,
(1994) proposed stness equations for slender beam (it can \ynich was with thickness-length ratigl equaled to & and

be considered as a corner-filleted flexure hinge without fil-iha maximum deforming rotational angle equaled t6, 28
leted corners) by means of the pseudo rigid body model. Th&pqsen as an instance in order to show the errors induced by
thickness-length ratiat(l) is limited to less than Q. How-  {hege equations. The comparison results are shown in Fig. 12.
ever, the deflgctlon is not Ilm_lted. Lopontlu proposed COM- |t shows that the results calculated by the equatiohlaf-
pliance equations by integrating the lineaffeliential equa- ¢ (2002) and Lobontiu diverged greatly from the FEA re-
tion of a beam. The thickness-length ratio has not been limits. The maximum errors induced by the equatioH ofi-

ited. But the deformation must be smallu et al.(2011) || (2002) and Lobontiu were 40.2252% and 45.787 %, re-
derived the compliance equations based on matrix methodgpeciively, happened on the maximum rotation. The error in-
These closed-form compliance equations for the special cong,ceq by the compliance equationd et al.(2011) is less
figuration which is circular-fillet flexure hinges can be uti- {150 Howell's and Lobontiu’s. and it is 32.57 %. However
lized when the thicknesgitlength() ratio is less than Q. e errors induced by full and simplefitiess equations de-

Stiffness equations proposed beng et al.(2012) are fit-  gyced byMeng et al(2012) are small, and the maximum er-
ted by means of FEA results based on Lobontiu’s equationsyqs are 3.3292 % and 3.6826 %, respectively. The minimum

Full stiffness equation and simplefitess equation can be gor is produced by the new empirical rotationaftatiss
valid even though the deformation is large. However, it is gquation and it is only 0.7955 % at the identical situation.
noticed that the loading approach for equationsHofvell Percentage errors of the comparison of various ratios of
(2002) andMeng et al.(2012) is a pure moment applied at hjckness-length were plotted in Fig. 13. The figure shows
the end. Therefore, these equations cannot describe the rerat the equations dfowell (2002) andDu et al.(2011) re-
tational stifness accurate!y when a yertical force is gpplied spectively keep accurate when the thickness-length tatio
at the free-end. These fitiess equations are shown in Ap- ig |ess than (; the equation of Lobontiu only keeps accurate
pendix A, B, C and D. when the rotational angle is small enough; and the equations
proposed byMeng et al.(2012) can keep accurate whatever
high ratio oft/l or high rotation. However, the equations of
Meng et al(2012) are more complex than the new empirical
rotational stifness equations and are less accurate than the
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Howell (2002), Lobontiu (2002),Du et al.(2011),Meng et

al. (2012) full and simple, and new empiric are 79.3530 %,
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Comparison between FEA results andfeiss equa-
tions results/l = 0.5.

length ratiot/l being 05 and the maximum displacement in

x direction being 0.0147 mm, was chosen as an instance in
order to show the errors induced by these equations. The
comparison results are shown in Fig. 14. We can observe
that the results calculated by the equations of Lonbontiu and
Du et al.(2011) diverged greatly from the FEA results. The
maximum error induced by the equationlafbontiu (2002)
andDu et al.(2011) were 32.3346 % and 3232, respec-
tively, happened on the maximum displacement. However,
the new empirical rotational $fhess equation produced only
0.0763 % at the identical situation.

Percentage errors of the comparison for various ratios of
thickness-length are plotted in Fig. 15. The figure shows that
the equations of Lobontiu aridu et al.(2011) only keeps ac-
curate when the ratio of thickness to length is small enough.
However, the results calculated by the new empiric8istss
equation inx direction have not diverged too much from the
FEA results. The maximum errors induced by these equa-

dfons of Lobontiu,Du et al.(2011), and new empirical are

45.2946 %, 45.0941 %, 0.7213 %, respectively.

83.3920 %, 66.3578 %, 3.7248 %, 3.3292 %, and 2.2474 %,
respectively.

According to the previous comparison approach, thf-sti

ness inx direction,F/dx of the corner-filleted flexure hinge
was calculated using design equations of Loboriiu, et

al.

(2011) and new empirical $thess equation. Their re-

The stitness iny direction,Fy/éy of the corner-filleted flex-
ure hinge was calculated using design equationobbntiu
(2002),Du et al.(2011) and new empirical $sihess equations
(Egs. 3 and 4) iry direction. Their results were compared
with the FEA results by simulation method as described
above. It is noticed that the corner-filleted flexure hinge,
which was with thickness-length rattgl being 05 and the

sults were compared with the FEA results by the simula-maximum displacement ydirection being 1.9226 mm, was
tion method used in this paper. As what's described abovechosen as an instance in order to show the errors induced
the corner-filleted flexure hinge, which was with thickness- by these equations. The comparison results are shown in
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Errors of comparison results.

Errors of comparison results.

by these equations of Lobontiu, and new empirical equations
350

r—— o are 87.1453 %, 82.8926 %, 5.2914 %, and 1.8233 %, respec-
+— Lobontiu =*‘;..j".‘-' tively. The errors induced by equations of Lobontiu existed
30| —&—Duetal - _ o because that the shear compliarisé$ness were not consid-
REREARREE b 5o o ered in the compliance equations
New Full Empirical Equation i‘__r;'.t"‘ p q o . .
= & To sum up, the suggestedfitiesgcompliances equations
_ wgé"* to be used for any particuldyl range and the correspond-
€ or o ing minimum, maximum percent errors, were summarized in
P " Table 2.
S 15y &

This paper proposes three empiricaftatess equations for a
wide range of/I ratios (002 < t/l < 1) and large deformation
for corner-filleted flexure hinges with fillet radiusl0Obased
2 on FEA results. These three empiricalfstess equations are
rotational stifness equation when a vertical force was ap-
Comparison between FEA results andfaiss equa- plied at the eqd; dfiness equation ir direction Whgn aforce
tions results/l = 0.5. in the x direction was applied at the end; andfstéss equa-
tion iny direction when a force in thedirection was applied
at the end. These equations were compared to FEA results
Fig. 16. We can see that the results calculated by equalc9ether with rotational stness equations of Howell, 8t
tion of Lobontiu (2002) andDu et al.(2011) deviate greatly ~N€sS equations proposed by Lobontiu, compliance equations
from the FEA results. The maximum error induced by the derived byDu etal.(2011) and rotational equations dieng
equation of Lobontiu anu et al.(2011) were 84.3457% €t al.(2012). Based on the results of comparisons, the pro-
and 61.2894 %, respectively, happened on the maximum dis?0Sed empirical siness equations are not only more simple
placement. However, the new empirical rotationaifiseiss ~ than the existed dthess equations, but also more accurate
equations produced only 2.49 % and 0.0622 %, respectivelythan others. The percentage errors of these empirical equa-
at the identical position. tions were found to be less than 6 % when compared to FEA
Percentage errors of the comparison for various ratios of €Sults. The new proposed empiricalfistess design equa-
thickness-length were plotted in Fig. 17. The figure showstions own simple shape and high design precision, which can
that the equation of Lobontiu ariu et al.(2011) were not ~ P€ €asily used in design of flexure-based compliant mecha-
accurate whenever the ratio of thickness to length is small'SMs-
or large. However, the results calculated by the new empir-
ical stifftness equation ity direction have not deviated too
much from the FEA results. The maximum errors induced

Displacement in y—direction (mm)



Suggested dtinesgcompliance equations for a particutdl range.

| Ko | Kx | Ky
t/l 0, Erfmin Erfmax Erfmin Erfmax Erfmin Erfmax
ra) O™ () o | ™ @) w | ™ (%)
Howell (2002)  (0,0.1] | 0.38  Simple 0.13 4.48 | N/A N/A N/A | N/A N/A N/A
Lobontiu (0,0.3] | 0.38 Complex 12.57 22.8 | Complex 7.28 22.8 | Complex 74.21 80.23
(2002a)
Chen et al. (0,0.1] | 0.38 Complex 1.13 4.13 | Complex 7.28 10.64| Complex 9.84 18.87
(2005)
('\gggg)et al. (1] | 038 Complex 0.12 333 | NA  N/A NA | NA  N/A N/A
(Full)
('\ggrl'g)et al ©1] | 038 Complex 0.03 372 | NA  N/A NA | NA O NA N/A
(Simple)
New Empirical ~ (0.02,1]| 0.38  Simple 3.40E-04 2.25| Simple 5.70E-05 0.5 | Simple 2.30E-04 5.29
Equation (0.08,1]| 0.38 NA N/A N/A | N/A N/A N/A | Complex 2.50E-05 1.82
_ 485’ + 88" +20s% + 308 + 10s+ 1
2(4s+ 1)5/2
xarctan(\/4s+ tan
_[3(23+1)2(1233 12s2 35) COSm
- L P 2(4s+ 1)*(2s+ 1 - 25COSpy)?
Compliance equation ir, y anda; direction . 193 22 4 Bst 1. |
2(4s+ 1)*(2s+ 1 - 25COSpy)?
A_x_ a s ><sin¢5m—‘%m
Fx Ewb ' Ewt
X Ng S3(cospm — 1)[(2s+ 1) cOSpym — 25— 1]
2(2s+ 1 - 2sC0Spm)?
g_ ka N, 4 BL 2a—12a(cl +¢* - a)N
R B
12a 242
vg N4+ b?’N6+G_t
2I(I2+6c +6cl)
Ewt _ _
— Rotational stifness equation
K., — EWP
Ao, _ 122 12 H= 1
M,  EwbP® > Ewd
where,

N; = 225+ 1)arctar(\/4s+ tan )
Vas+1

(23+ 1) dm
Warctar( V4s+1 tan?)

253(23+ 1)(632 + 45+ 1) Singm
(4s+ 52 (1+ 25— 25C0SPm)°

_ 25%(125" + 45+ 1) SiNgm COSPm
(4s+ 1)°(1 + 25— 25COSPm)°

— Compliance equation ir direction

1 [1=2r , 2(2r+t i
CuL Ew[ =+ J\/WZ arctan\/m_ i]
- Rotational compliance equation
2r
C -2r+—<
" Eu { @ +0) @+t

[t (4r +1) (Gr2 +4rt + t2) +
6r(2r +t)? Vi(dr + ) arctan /1 + %]}



— Compliance equation ipdirection

41-2r)(2=Ir +12)

Co= Bl 36

+t@r +1) [—80r4 +24r3t + 8(3+ 21) r2t’+

4(1+2m)rt® + xté] /4 EB(4r +1)°
(2r+t)3(6r2—4rt—t2) arctan, [ 1+ 4r
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— Full rotational compliance equation

s .
i (hY! .
Trw = g ui,-G'Z([) whereu;; =0ifi+j>4
i.j=0

Km.rul = TrunKg, L
Where the cofficientsu;; are shown in Table 3.

— Simple rotational compliance equation

3 h k
IﬁSimpIez ZVK(E)
k=0

KM,Simple = l—‘SimpleKez,L
Where the coficientsy;; are shown in Table 3.

Codficients for Full and Simple Equation.

Uoo
Uo1
Uoz
U2
Vo
V3

1.016065 wupz —0.043752 uy 0.009576
—0.680692 uyg 0.002410 uy; —-0.095298

0.292380 uw;; -0.018696 uz —0.003720

0.018095

1.018856 v; -0.713719 v, 0.350531
—-0.081827
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