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Abstract. This paper investigates the existing stiffness equations for corner-filleted flexure hinges. Three
empirical stiffness equations for corner-filleted flexure hinges (each fillet radius,r, equals to 0.1l; l, the length
of a corner-filleted flexure hinge) are formulated based on finite element analysis results for the purpose of
overcoming these investigated limitations. Three comparisons made with the existing compliance/stiffness
equations and finite element analysis (FEA) results indicate that the proposed empirical stiffness equations
enlarge the range of rate of thickness (t, the minimum thickness of a corner-filleted flexure hinge) to length (l),
t/l (0.02≤ t/l ≤ 1) and ensure the accuracy for each empirical stiffness equation under large deformation. The
errors are within 6 % when compared to FEA results.

1 Introduction

Flexure-based compliant mechanisms (FCMs) are becoming
increasingly popular due to their remarkable advantages such
as part-count reduction, reduced assembly time, and simpli-
fied manufacturing processes in terms of cost reduction, in-
creased precision and reliability, reduced wear and weight,
and increased performance (Palmieri et al., 2012; Lobontiu,
2002; Berselli, 2009). In addition, FCMs are the perfect sub-
stitutions of traditional rigid mechanisms, compared to the
other types of compliant mechanisms. A FCM can not only
transform a traditional rigid mechanism in terms of its func-
tions and structure, but also implement high precision and
high frequency while the traditional rigid mechanism cannot
do. For instance, FCMs are increasingly used in the fields of
micro-scale and nano-scale technologies, such as smaller and
high precision positioning devices in automobiles, telecom-
munications, medical, biology, optics or computer industries
(Ma et al., 2006; Ivanov and Corves, 2010; Yin and Anantha-
suresh, 2003; Lobontiu and Garcia, 2003; Dong et al., 2008,
2005; Xu and King, 1996; Li and Xu, 2009).

A FCM relies on the elastic deformation of its connectors,
i.e. the flexure hinges, to perform its functions of transmit-
ting and/or transforming motion and force (Yin and Anan-

thasuresh, 2003). The flexure hinges which are utilized in
connecting the rigid components are regarded as the tradi-
tional joints in a mechanism, therefore, play a key role in
realizing the roles of the mechanism. In spite that flexure
hinges own numerous attractive attributes over traditional
rigid joints, however, FCMs are not used as widely as rigid-
body mechanisms. The main limitation might be the lack of
materials and processing techniques that enable structures
deform considerably with adequate strength. A lot of re-
searchers put efforts on changing the shape of flexure hinges
and studying the stiffness and stress characteristics of these
flexure hinges. So far, the flexure hinges can be classified
into two categories: the primitive flexure hinges, such as cir-
cular flexure hinges, corner filleted flexure hinges, ellipti-
cal flexure hinges, parabolic flexure hinges, hyperbolic flex-
ure hinges, “V” shape flexure hinges, right circular elliptical
flexure hinges, right circular corner-filleted flexure hinges,
two axes flexure hinges, multiple axes flexure hinges, and
the complex flexure hinges such as cross axis flexure hinges,
cartwheel flexure hinges. The shapes of these flexure hinges
can be found in the literatures (Meng et al., 2012; Zettl et al.,
2005; Chen et al., 2005; Lobontiu and Paine, 2002; Lobontiu
et al., 2002a, 2001, 2002b), this paper will not present them
in detail again. Among these flexure hinges, circular flexure
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(a) (b) (c)

Figure 1. Corner-filleted flexure hinge(a), circular flexure hinge(b) and elliptical flexure hinge(c).

hinges, elliptical flexure hinges and corner-filleted flexure
hinges as shown in Fig. 1 are commonly used in FCMs be-
cause they are simple and easy to control (Smith et al., 1997;
Yong et al., 2008).

This paper addresses the corner-filleted flexure hinges.
The stiffness characteristics of corner-filleted flexure hinges
with a wide range oft/l are analyzed under different loads
applied at the free-end. The influence introduced by shear-
ing is taken into account during the whole analysis. Different
ratiost/l are investigated in order to overcome the influence
induced by shearing.

The remaining sections of this paper are organized as
follows. Section 2 summarizes simply existing research re-
sults and some problems need to be resolved in future about
corner-filleted flexure hinges. In Sect. 3, fifty finite element
analysis models of corner-filleted flexure hinges are built up
and their static plane stress analysis is simulated. In Sect. 4,
three stiffness empirical equations are formulated by fitting
the FEA results. A comparison of the new results together
with the previous results is made to FEA in Sect. 5. In the
end, the conclusions are drawn in Sect. 7.

2 Literature review

It can be dated back to 1965,Paros and Weisbordfirstly pre-
sented the compliance-based approach to symmetric circu-
lar and right circular flexure hinges by giving the compli-
ance equations and the approximate engineering formulas
for these flexure hinges. The analytical approach of mono-
lithic flexure hinges is the landmark in the research of flex-
ure hinges. Particularly, the angles and linear deflections pro-
duced on all three axes are expressed in terms of the corre-
sponding external loading.

Ragulskis et al.(1989) analyzed the filleted flexure hinges
by applying the static finite element analysis method in order
to calculate their compliances (Lobontiu et al., 2001).

In the early work ofHowell and Midha(1994), they pre-
sented a computer-aided design method to pseudo-rigid-body
model that included short length beam. A short length beam
can be considered as a corner-filleted flexure hinges without
filleted corners at the junction of flexible part and rigid part.

In 1996,Xu and Kingutilized the topology method to de-
sign a flexure-based amplifier for piezo-actuators. Right cir-
cular, corner-filleted, and elliptical flexure hinges were an-
alyzed by static finite element analysis (FEA) method. By

comparing both the FEA models to the traditional right-
circular flexure hinges, three useful points were presented in
their conclusions. They revealed that the corner-filleted flex-
ure hinges are the most accurate in terms of motions relative
to the elliptical flexure hinges, the elliptical flexure hinges
have less stress for the same displacement and right circular
flexure hinges are the stiffest. It is worth to note that the mo-
tion described here does not mean the precision of rotation.
Even though the corner-filleted flexure hinges provide more
accuracy on motion than the elliptical flexure hinges, they
present less precision in terms of rotation. The deviation of
the rotation center point of a corner-filleted flexure hinges is
bigger than a circular flexure hinge.

Lobontiu et al.(2001) did a lot of works on the anal-
ysis of corner-filleted flexure hinges. They presented an
analytical approach to corner-filleted flexure hinges in or-
der to implement corner-filleted flexure hinges used in
piezoelectric-driven amplification mechanisms. In this pa-
per, closed-form in-plane compliance factor equations were
formulated based on Castigliano’s second theorem. A com-
parison was made with right circular flexure hinges which
revealed that the corner-filleted flexure hinges are more
bending-compliant and induce lower stresses but less pre-
cise in rotation.Lobontiu and Paine(2002) as well asLobon-
tiu et al. (2002a, b) also developed the other type of flexure
hinges by means of the similar approach as corner-filleted
flexure hinges, for instance, cross-section corner-filleted flex-
ure hinges in three-dimensional compliant mechanisms ap-
plications, conic-section (circular, elliptical, parabolic and
hyperbolic) flexure hinges. In 2004,Lobontiu et al.proposed
the closed-form stiffness equations that can be used to char-
acterize the static model and dynamic behavior of single-axis
corner-filleted flexure hinges based on Castiliagno’s first the-
orem. The new stiffness equations reflect sensitivity to direct-
and cross-bending, axial loading, and torsion. Compared to
their previous works, the resulting equations for the stiffness
factors are more accurate and completely define the elas-
tic response of corner-filleted flexure hinges. No matter how
the previous stiffness equations or the refined stiffness equa-
tions were presented by the researchers, these equations can
be valid only under some assumptions. Two main assump-
tions are that the deflection subject to shearing is negligible
for beam-like structures and the deformations of a flexure
hinge are small.Lobontiu and Garcia(2003) presented an an-
alytical model for displacement and stiffness calculations of
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planar compliant mechanisms with single-axis flexure hinges
relying on the strain energy and Castigliano’s displacement
theorem. Specifically, circular flexure hinges and corner-
filleted flexure hinges as typical symmetric single-axis flex-
ure hinges are contained in the amplifiers in order to verify
the deduced stiffness equations.

Du et al.(2011) proposed that a new class of flexure hinges
named elliptical-arc-fillet flexure hinges, which covers ellip-
tical arc, circular-arc-fillet, elliptical-fillet, elliptical, circular,
circular-fillet (in the other words, corner-filleted, the major
axis equals to the minor axis of the elliptical arc), and right
circular flexure hinges together under one set of equations.
The closed-form equations for compliance and precision
matrices of elliptical-arc-fillet flexure hinges were derived
in their works. In consequence, the analytical results were
within 10 % error compared to the FEA results and within
8 % error compared to the experimental results. It is worth
to note that the closed-form equations were derived based on
the small-deformation theory. Therefore, these equations can
be valid only when the deformations of the flexure hinges are
small enough, or the thicknesst to lengthl ratios are small
enough (Du et al., 2011).

With the development of FCMs, the refined design equa-
tions under small deflections for typical flexure hinges cannot
meet the needs of designers. Large deformation started to be
a key problem to develop the typical flexure hinges. Never-
theless, the stiffness characteristics of flexure hinges under
large deformation are complex due to shearing deformation.
Scholars seek to stay away from the problem in the research.
For instance,Trease et al.(2005) proposed a new compli-
ant translational joint in order to overcome the drawbacks of
typical flexure hinges such as limited range of motion, axis
drift and off-axis stiffness. Compared with the typical flexure
hinges, however, the new designed joint is complex.Howell
(2002) studied short slender beams under large deformation
due to a force or a moment on its free-end. The length of
the short beam should be much shorter than the length of
the rigid part, while the flexible part should be more compli-
ant than the rigid part. It signifies that the thickness of the
short beam should be much less than its length (t/l ≤ 0.1) (as
shown in Fig. 1a).

Tian et al.presented a dimensionless design graph for cir-
cular, corner-filleted and cross flexure hinges, based on finite
element analysis. The maximum stiffness properties from
different hinges in identical situations were described by the
FEA results. It revealed that a corner-filleted flexure hinge is
preferred over a circular flexure hinge for stiffness demands
in a single direction, while the medium stiffness is a cross
flexure hinge (Qin et al., 2013; Tian et al., 2010b).

In real applications, however, the existed research results
cannot meet some requirements such as stiffness and struc-
ture magnitude (the different ratiot/l) determination.Meng
et al.(2012) studied the corner-filleted flexure hinges by syn-
thesizing each kind of situation, i.e. the different ratiot/l

and large deformation, under only a pure moment on the
free-end.

From the previous works, it can be noted that there are no
more accurate design formulas at the stage to estimate stiff-
ness/compliances in thex andy directions fort/l ≥ 0.1 and
the rotational stiffness equation for a vertical force applied at
the free end. Therefore, general empirical stiffness equations
(namedKθ, Kx andKy) are formulated in the Sect. 4 based
on FEA results to evaluate the stiffness inx andy directions
for a wide range oft/l ratios. Also, the rotational empirical
stiffness equation will be presented in this section.

3 FEA modeling of corner-filleted flexure hinge

According to the descriptions aforementioned, there are three
basic research approaches to the flexure hinges. The first
one is based on displacement theorem, the second one is
the pseudo rigid body model (PRBM), and the last one is
the finite element analysis method. FEA method is used as
a benchmark for calculating the rotational stiffness and the
stiffness in thex andy directions for flexures. Also, FEA is an
important approach to verify these formulas proposed based
on the first two research methods. The accuracy of these FEA
models was verified by Lobontiu and was with the maximum
8 % error compared to three experimental results (Lobontiu
et al., 2004). Therefore, this paper studies the stiffness char-
acteristics for corner-filleted flexure hinge with a wide range
of t/l under large deformation by means of FEA.

COMSOL software was used to do with FEA of flexure
hinges. Fifty corner-filleted flexure hinge models were gener-
ated by using two-dimensional, plane stress, parametric anal-
ysis, which were moved in thex andy directions. The ratio
of t/l for these fifty models are 0.02,0.04,0.06, . . . ,1, respec-
tively. Please note that the fillet radius,r, for each corner-
filleted flexure model is specified to 0.1l in this paper because
the fillet radius,r, is used in eliminating the stress concentra-
tion at each corner of a hinge. In the work ofMeng et al.
(2012), the rate ofr/l was investigated and the results indi-
cated that the minimum stress happened when the rate ofr/l
equals to 0.1 under identical material,t/l rate, and deforma-
tion conditions. The geometry of one of these analysis mod-
els is shown in Fig. 2. The modeled corner-filleted flexure
hinges had a depth of 5 mm with a Young’s modulus (E) of
1.135 GPa and a Poisson ratio (υ) of 0.33. Triangle element
type is more suitable to model irregular shapes and is cho-
sen in this paper to generate the model mesh. Four times re-
fined meshing technique was used to produce automatically
refined meshing at parts that high stress concentrations were
most likely to occur in order to increase the analytical ac-
curacy (see Fig. 3). The analysis of flexure hinges always
is assumed to be cantilever beam. One end is fixed and the
other one is free-end. It is easy to figure out that the length
of a fixed rigid part cannot be too long because the accu-
racy of the FEA results can be significantly influenced by the
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Figure 2. An analytical corner-filleted flexure hinge model.

deformation of this part. On the other hand, the free rigid part
should keep it rigid in order to ensure the accuracy of the re-
sults. Therefore, the FEA models were designed with a short
rigid part at the fixed end and a long rigid part of the fore-
end as shown in Fig. 2. The research of corner-filleted flex-
ure hinges under a pure moment applied at the free-end was
presented in the previous work. This paper studies corner-
filleted flexure hinges under a force in thex or y direction. It
is well known that the accuracy of the FEA results can also
be influenced by the way the point conditions are assigned to
the model. For instance, when a point force in they direction
is applied at the end point of the whole model, an extra mo-
ment can be produced in terms of the rotational center point.
As for the position where force is applied in they direction,
in this paper, a couple of forces are loaded at the point 1 and
point 2, respectively, as shown in Fig. 2. While as for the
position where force loaded in thex direction, a couple of
forces are applied at the point 3 and point 4. Such loading
method can decrease the FEA results error.

4 Empirical stiffness/compliance equations

From the previous section, FEA models with different t/l
ratios, which were set from 0.02 to 1 with an increment of
0.02, were generated in COMSOL software. Forces in terms
of Fx and Fy were applied at each model and the corre-
sponding deformations,δx and δy were read. Figure 4a, b
and c, which shows the relationship between the applied
force, the deformation/deflection, and the rate oft/l, indi-
cates that the stiffness is increasing with the increasing defor-
mation/deflection and the increasing geometric parametert/l.
According to the compliance/stiffness equations calculated
based on the Castiliagno’s displacement theorem (Lobontiu,
2002), the Young’s modulus,E, and the width of hinge,w,
are proportional to the stiffness aroundz axis and inx, y di-
rections. Therefore, the product of the two parameters can
be divided. Such this, the stiffness can be transformed into a
dimensionless quantity. The dimensionless design approach
is very popular in the design of FCMs. In addition, the ra-
tio of height to length,t/l, is an important parameter to the
stiffness.

Figure 3. FEA meshing.

4.1 Empirical rotational stiffness equation

The rotational stiffness for corner-filleted here is under the
condition of a perpendicular force applied at the end. Ac-
cording to the data in terms ofδx and δy read from FEA
results, the rotational angles were calculated by means of de-
forming geometric relationship. The data shown in Fig. 4a
is rearranged for stiffness characteristic and the relationship
is about rotational stiffness dimensionless design parameter
(Kθ/Ew) and the ratet/l as shown in Fig. 5.

It is easy to figure out that the dimensionless design pa-
rameter is nearly a function of the ratet/l. While the devi-
ation lies at the end of the relationship curve indicates that
the stiffness is related to the deformation. The fourth poly-
nomial, the fifth polynomial, and the sixth polynomial func-
tions were fitted with fitting target of the norm of the residu-
als, 0.61475,0.61323,0.61321, respectively, by means of the
data points to formulate empirical rotational stiffness equa-
tions. The fitting errors of these fitting functions are shown
in Fig. 6. It can be observed from the figure that the minimum
fitting error is produced by the sixth polynomial fitting func-
tion. The maximum fitting error produced by this fitting func-
tion is 2.3474 %. In consequence, the sixth polynomial fitting
function is chosen as the rotational stiffness design equation
as shown in Eq. (1) and its coefficients are shown in Table 1.

Kθ
Ew
=

6∑
i=0

ai

( t
l

)i
(1)

It is worth to mention that the maximum rotational angle
of these FEA models during their deforming is 23◦. It means
that the influence about shearing deformation was taken into
account in the empirical stiffness equation.

4.2 Empirical stiffness equation in x direction

By following the similar procedure as the rotational stiffness,
the relationship between the dimensionless design parameter
for stiffness inx direction,K−x/Ew, and the ratet/l is shown
in Fig. 7.

According to the dataδx read from FEA results, third,
fourth, fifth, sixth, and seventh degrees of polynomial func-
tions were fitted to the fitting target of the norm of the residu-
als, 0.04339, 0.015942, 0.010882, 0.010003, 0.0098163, re-
spectively. Figure 8 shows the fitting errors for each fitting
function. We can figure out from this figure that the min-
imum fitting errors were produced by the seventh degree
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Figure 4. (a) The relationship betweenMz, t/l, and rotation angle,
θz; (b) The relationship betweenFx, t/l, and displacement inx di-
rection; (c) The relationship betweenFy, t/l, and displacement in
y direction.

polynomial function and the maximum fitting error produced
by this function is 0.7213 %. Consequently, the seventh de-
gree polynomial function is chosen as the dimensionless stiff-
ness design equation as shown in Eq. (2) and its coefficients
are listed in Table 1.

Figure 5. Rotational stiffness dimensionless design parameter.

Figure 6. Fitting errors.

Kx

Ew
=

7∑
i=0

bi

( t
l

)i
(2)

4.3 Empirical stiffness equation in y direction

Figure 4c is rearranged for stiffness equation iny direction
as shown in Fig. 9. It can be found from this figure that the
dimensionless design stiffness parameterKy/Ew also can be
considered as a function of the ratet/l.

However, the deviation which lies on the end part of the
curve is larger than the rotational stiffness parameter. It indi-
cates that the stiffness iny direction is related to the defor-
mation of the hinge. In this paper, a simple fitting function
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Figure 7. Stiffness inx direction dimensionless design parameter.

Figure 8. Fitting errors.

was chosen at first. The fourth, fifth, sixth degree polyno-
mial function was fitted with the fitting target of the norm of
the residuals, 0.0064273, 0.0064261, and 0.0064261, respec-
tively. The fitting errors are shown in Fig. 10 that shows the
minimum errors were produced by the sixth degree polyno-
mial function and the maximum error is 5.2914 %. Therefore,
as for the simple fitting function, the sixth degree polynomial
function is chosen as the dimensionless stiffness iny direc-
tion design equation as shown in Eq. (3) and its coefficients
are listed in Table 1.

Ky

Ew
=

6∑
i=0

ci

( t
l

)i
(3)

In order to obtain more accurate fitting stiffness equations,
the displacementδy is taken into account. By following the

Figure 9. Stiffness iny direction dimensionless design parameter.

Figure 10. Fitting errors.

procedure mentioned above, the fitting equation is shown in
Eq. (4) and its coefficients are listed in Table 1. Figure 11
shows the fitting error together with the fitting error produced
by the simple fitting equation. It shows that the maximum
error produced by the complex one is 1.8233 % when the rate
t/l is larger than 0.08, while the error is much larger than
the one produced by simple fitting equation when the ratet/l
is smaller than 0.08. Therefore, the designer can choose the
design equation according to the design ratet/l.

Kcy

Ew
=

5∑
i, j=0

µi j

( t
l

)i
(∆y) j , j ≤ 2 (4)

It should be noticed that the influence about shearing de-
formation is taken into account in the empirical stiffness
equation.
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Figure 11. Fitting errors.

5 Comparison of compliance/stiffness results with
the previous work and FEA

From Sect. 2, there are a lot of researches in the study of
compliance/stiffness characteristics for corner-filleted flex-
ure hinges. This paper adopts the stiffness/compliance equa-
tions proposed byHowell (2002), Lobontiu (2002), Du et
al. (2011) andMeng et al.(2012) in order to compare to
the new empirical stiffness equation.Howell and Midha
(1994) proposed stiffness equations for slender beam (it can
be considered as a corner-filleted flexure hinge without fil-
leted corners) by means of the pseudo rigid body model. The
thickness-length ratio (t/l) is limited to less than 0.1. How-
ever, the deflection is not limited. Lobontiu proposed com-
pliance equations by integrating the linear differential equa-
tion of a beam. The thickness-length ratio has not been lim-
ited. But the deformation must be small.Du et al. (2011)
derived the compliance equations based on matrix methods.
These closed-form compliance equations for the special con-
figuration which is circular-fillet flexure hinges can be uti-
lized when the thickness(t)-length(l) ratio is less than 0.1.
Stiffness equations proposed byMeng et al.(2012) are fit-
ted by means of FEA results based on Lobontiu’s equations.
Full stiffness equation and simple stiffness equation can be
valid even though the deformation is large. However, it is
noticed that the loading approach for equations ofHowell
(2002) andMeng et al.(2012) is a pure moment applied at
the end. Therefore, these equations cannot describe the ro-
tational stiffness accurately when a vertical force is applied
at the free-end. These stiffness equations are shown in Ap-
pendix A, B, C and D.

Table 1. Coefficients for Eqs. (1), (2), (3), and (4).

Eq. (1) Eq. (2) Eq. (3)

a0 6.10E-04 b0 1.64E-03 c0 −1.60E-03
a1 −1.87E-02 b1 1.02E+00 c1 7.78E-03
a2 2.25E-01 b2 −1.11E+00 c2 −1.85E-02
a3 7.42E+00 b3 2.28E+00 c3 3.00E-02
a4 −4.57E+00 b4 −3.61E+00 c4 8.28E-04
a5 2.11E+00 b5 3.75E+00 c5 −6.27E-05
a6 −4.59E-01 b6 −2.17E+00 c6 1.92E-06

b7 5.27E-01

Eq. (4)

µ00 1.10E-05 µ12 −1.13E-02 µ31 8.71E-03
µ01 −1.28E-04 µ20 1.94E-03 µ32 −1.39E-02
µ02 7.63E-04 µ21 −6.77E-03 µ40 −1.18E-02
µ10 −2.35E-04 µ22 5.02E-02 µ41 −3.80E-03
µ11 1.75E-03 µ30 2.55E-02 µ50 2.67E-03

5.1 Comparison of rotational stiffness equations, Mz/θz

Stiffness,Mz/θz (or its inverse, compliance,θz/Mz) of the
corner-filleted flexure hinge as mentioned before was calcu-
lated using design equations ofLobontiu(2002), Howell and
Midha (1994), Du et al.(2011), full and simple equation of
Meng et al.(2012) and the new empirical equation. Their re-
sults were compared with the FEA results by the simulation
method used in this paper. A corner-filleted flexure hinge,
which was with thickness-length ratiot/l equaled to 0.5 and
the maximum deforming rotational angle equaled to 23◦, is
chosen as an instance in order to show the errors induced by
these equations. The comparison results are shown in Fig. 12.
It shows that the results calculated by the equation ofHow-
ell (2002) and Lobontiu diverged greatly from the FEA re-
sults. The maximum errors induced by the equation ofHow-
ell (2002) and Lobontiu were 40.2252 % and 45.787 %, re-
spectively, happened on the maximum rotation. The error in-
duced by the compliance equation ofDu et al.(2011) is less
than Howell’s and Lobontiu’s, and it is 32.57 %. However,
the errors induced by full and simple stiffness equations de-
duced byMeng et al.(2012) are small, and the maximum er-
rors are 3.3292 % and 3.6826 %, respectively. The minimum
error is produced by the new empirical rotational stiffness
equation and it is only 0.7955 % at the identical situation.

Percentage errors of the comparison of various ratios of
thickness-length were plotted in Fig. 13. The figure shows
that the equations ofHowell (2002) andDu et al.(2011) re-
spectively keep accurate when the thickness-length ratiot/l
is less than 0.1; the equation of Lobontiu only keeps accurate
when the rotational angle is small enough; and the equations
proposed byMeng et al.(2012) can keep accurate whatever
high ratio oft/l or high rotation. However, the equations of
Meng et al.(2012) are more complex than the new empirical
rotational stiffness equations and are less accurate than the
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Figure 12. Comparison between FEA results and stiffness equa-
tions resultst/l = 0.5.

Figure 13. Errors of comparison results.

new one. The maximum errors induced by these equations of
Howell (2002),Lobontiu (2002),Du et al.(2011),Meng et
al. (2012) full and simple, and new empiric are 79.3530 %,
83.3920 %, 66.3578 %, 3.7248 %, 3.3292 %, and 2.2474 %,
respectively.

5.2 Comparison of stiffness equations in x direction,
Fx/δx

According to the previous comparison approach, the stiff-
ness inx direction,Fx/δx of the corner-filleted flexure hinge
was calculated using design equations of Lobontiu,Du et
al. (2011) and new empirical stiffness equation. Their re-
sults were compared with the FEA results by the simula-
tion method used in this paper. As what’s described above,
the corner-filleted flexure hinge, which was with thickness-

Figure 14. Comparison between FEA results and stiffness equa-
tions resultst/l = 0.5.

length ratiot/l being 0.5 and the maximum displacement in
x direction being 0.0147 mm, was chosen as an instance in
order to show the errors induced by these equations. The
comparison results are shown in Fig. 14. We can observe
that the results calculated by the equations of Lonbontiu and
Du et al.(2011) diverged greatly from the FEA results. The
maximum error induced by the equation ofLobontiu(2002)
andDu et al.(2011) were 32.3346 % and 32.1432, respec-
tively, happened on the maximum displacement. However,
the new empirical rotational stiffness equation produced only
0.0763 % at the identical situation.

Percentage errors of the comparison for various ratios of
thickness-length are plotted in Fig. 15. The figure shows that
the equations of Lobontiu andDu et al.(2011) only keeps ac-
curate when the ratio of thickness to length is small enough.
However, the results calculated by the new empirical stiffness
equation inx direction have not diverged too much from the
FEA results. The maximum errors induced by these equa-
tions of Lobontiu,Du et al. (2011), and new empirical are
45.2946 %, 45.0941 %, 0.7213 %, respectively.

5.3 Comparison of stiffness equations in y direction,
Fy/δy

The stiffness iny direction,Fy/δy of the corner-filleted flex-
ure hinge was calculated using design equations ofLobontiu
(2002),Du et al.(2011) and new empirical stiffness equations
(Eqs. 3 and 4) iny direction. Their results were compared
with the FEA results by simulation method as described
above. It is noticed that the corner-filleted flexure hinge,
which was with thickness-length ratiot/l being 0.5 and the
maximum displacement iny direction being 1.9226 mm, was
chosen as an instance in order to show the errors induced
by these equations. The comparison results are shown in
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Figure 15. Errors of comparison results.

Figure 16. Comparison between FEA results and stiffness equa-
tions resultst/l = 0.5.

Fig. 16. We can see that the results calculated by equa-
tion of Lobontiu(2002) andDu et al.(2011) deviate greatly
from the FEA results. The maximum error induced by the
equation of Lobontiu andDu et al.(2011) were 84.3457 %
and 61.2894 %, respectively, happened on the maximum dis-
placement. However, the new empirical rotational stiffness
equations produced only 2.49 % and 0.0622 %, respectively,
at the identical position.

Percentage errors of the comparison for various ratios of
thickness-length were plotted in Fig. 17. The figure shows
that the equation of Lobontiu andDu et al.(2011) were not
accurate whenever the ratio of thickness to length is small
or large. However, the results calculated by the new empir-
ical stiffness equation iny direction have not deviated too
much from the FEA results. The maximum errors induced

Figure 17. Errors of comparison results.

by these equations of Lobontiu, and new empirical equations
are 87.1453 %, 82.8926 %, 5.2914 %, and 1.8233 %, respec-
tively. The errors induced by equations of Lobontiu existed
because that the shear compliances/stiffness were not consid-
ered in the compliance equations.

To sum up, the suggested stiffness/compliances equations
to be used for any particulart/l range and the correspond-
ing minimum, maximum percent errors, were summarized in
Table 2.

6 Conclusions

This paper proposes three empirical stiffness equations for a
wide range oft/l ratios (0.02≤ t/l ≤ 1) and large deformation
for corner-filleted flexure hinges with fillet radius 0.1l based
on FEA results. These three empirical stiffness equations are
rotational stiffness equation when a vertical force was ap-
plied at the end; stiffness equation inx direction when a force
in the x direction was applied at the end; and stiffness equa-
tion in y direction when a force in they direction was applied
at the end. These equations were compared to FEA results
together with rotational stiffness equations of Howell, stiff-
ness equations proposed by Lobontiu, compliance equations
derived byDu et al.(2011) and rotational equations ofMeng
et al. (2012). Based on the results of comparisons, the pro-
posed empirical stiffness equations are not only more simple
than the existed stiffness equations, but also more accurate
than others. The percentage errors of these empirical equa-
tions were found to be less than 6 % when compared to FEA
results. The new proposed empirical stiffness design equa-
tions own simple shape and high design precision, which can
be easily used in design of flexure-based compliant mecha-
nisms.
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Table 2. Suggested stiffness/compliance equations for a particulart/l range.

Kθ Kx Ky

t/l θz Form
Errmin Errmax Form

Errmin Errmax Form
Errmin Errmax

(rad) (%) (%) (%) (%) (%) (%)

Howell (2002) (0,0.1] 0.38 Simple 0.13 4.48 N/A N/A N/A N/A N/A N/A

Lobontiu
(2002a)

(0,0.3] 0.38 Complex 12.57 22.8 Complex 7.28 22.8 Complex 74.21 80.23

Chen et al.
(2005)

(0,0.1] 0.38 Complex 1.13 4.13 Complex 7.28 10.64 Complex 9.84 18.87

Meng et al.
(2012)

(0,1] 0.38 Complex 0.12 3.33 N/A N/A N/A N/A N/A N/A

(Full)

Meng et al.
(2012)

(0,1] 0.38 Complex 0.03 3.72 N/A N/A N/A N/A N/A N/A

(Simple)

New Empirical (0.02,1] 0.38 Simple 3.40E-04 2.25 Simple 5.70E-05 0.5 Simple 2.30E-04 5.29

Equation (0.08,1] 0.38 N/A N/A N/A N/A N/A N/A Complex 2.50E-05 1.82

Appendix A

Du et al.

Compliance equation inx, y andαz direction

∆x
Fx
=

a
Ewb

N1+
l

Ewt

∆y
Fy
= ka

GwbN1+
6L2a−12a(cl+ c2−a2)

Ewb3 N2

− 12a3

Ewb3 N4+
24a2l
Ewb3 N6+

kl
Gwt

+
6L2l −2l(l2+6c2+6cl)

Ewt3

∆αz

Mz
=

12a
Ewb3

N2+
12l

Ewt3

where,

N1 =
2(2s+1)
√

4s+1
arctan

(√
4s+1tan

φm

2

)
− φm

N2= 12s4(2s+1)
(4s+1)5/2 arctan

(√
4s+1tanφm

2

)
+

2s3(2s+1)(6s2+4s+1)sinφm

(4s+1)2(1+2s−2scosφm)2

−
2s4(12s2+4s+1)sinφmcosφm

(4s+1)2(1+2s−2scosφm)2

N4 =
48s5+8s4+20s3+30s2+10s+1

2(4s+1)5/2

×arctan(
√

4s+1tanφm

2 )

−[ s(2s+1)2(12s3−12s2−3s)cosφm

2(4s+1)2(2s+1−2scosφm)2

+ −12s3+2s2+6s+1
2(4s+1)2(2s+1−2scosφm)2 ]

×sinφm−
φm

4

N6 =
s3(cosφm−1)[(2s+1)cosφm−2s−1]

2(2s+1−2scosφm)2

Appendix B

Howell et al.

– Rotational stiffness equation

KH =
Ewt3
12l

Appendix C

Lobontiu

– Compliance equation inx direction

Cx,L =
1

Ew

[
l −2r

t +
2(2r + t)
√

t(4r+t)
arctan

√
1+ 4r

t −
π
2

]
– Rotational compliance equation

Cθz,L =
12

Ewt3

{
l −2r + 2r

(2r + t) (4r + t)3[
t (4r + t)

(
6r2+4rt + t2

)
+

6r(2r + t)2√t (4r + t)arctan
√

1+ 4r
t

]}
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– Compliance equation iny direction

Cy,L =
3

Ew{
4(l −2r)

(
l2− lr + r2

)
3t3

+
√

t (4r + t)
[
−80r4+24r3t+8(3+2π) r2t2+

4(1+2π) rt3+ πt4
]
/4

√
t5(4r + t)5

+
(2r+t)3(6r2−4rt−t2)arctan

√
1+4r

t√
t5(4r+t)5

+
[
−40r4+8lr 2 (2r − t)+12r3t+4(3+2π) r2t2

+2(1+2π) rt3+ πt
4

2

]
/2t2(4r + t)2

+
4l2r

(
6r2+4rt + t2

)
t2 (2r + t) (4r + t)2 −

(2r + t)
[
−24(l − r)2r2−8r3t+14r2t2+8rt3+ t4

]
√

t5(4r+t)5

arctan
√

1+ 4r
t }

Appendix D

Meng et al.

– Full rotational compliance equation

ΓFull =

3∑
i, j=0

ui jθ
i
z

(
h
L

) j

whereui j = 0 if i + j ≥ 4

KM,Full = ΓFullKθz,L
Where the coefficientsui j are shown in Table 3.

– Simple rotational compliance equation

ΓSimple=

3∑
k=0

vk

(
h
L

)k

KM,Simple= ΓSimpleKθz,L
Where the coefficientsvi j are shown in Table 3.

Table A1. Coefficients for Full and Simple Equation.

u00 1.016065 u03 −0.043752 u20 0.009576
u01 −0.680692 u10 0.002410 u21 −0.095298
u02 0.292380 u11 −0.018696 u30 −0.003720
u12 0.018095
v0 1.018856 v1 −0.713719 v2 0.350531
v3 −0.081827
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