Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-949-2022
https://doi.org/10.5194/ms-13-949-2022
Research article
 | 
17 Nov 2022
Research article |  | 17 Nov 2022

Development of a force-field-based control strategy for an upper-limb rehabilitation robot

Jiasheng Pan, Leigang Zhang, and Qing Sun

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Experiment and Best Practice
Obstacle-avoidance path planning based on the improved artificial potential field for a 5 degrees of freedom bending robot
Quansheng Jiang, Kai Cai, and Fengyu Xu
Mech. Sci., 14, 87–97, https://doi.org/10.5194/ms-14-87-2023,https://doi.org/10.5194/ms-14-87-2023, 2023
Short summary
Assessment of force control for surface finishing – an experimental comparison between Universal Robots UR10e and FerRobotics active contact flange
Stefan Gadringer, Hubert Gattringer, and Andreas Mueller
Mech. Sci., 13, 361–370, https://doi.org/10.5194/ms-13-361-2022,https://doi.org/10.5194/ms-13-361-2022, 2022
Short summary
Characteristics of the Received Signal of an Ultrasonic Sensor Installed in a Chamber with Micro-Leakage
Wonjun Seo, Seokyeon Im, and Geesoo Lee
Mech. Sci., 12, 1051–1060, https://doi.org/10.5194/ms-12-1051-2021,https://doi.org/10.5194/ms-12-1051-2021, 2021
Short summary
Crushing mechanism of a mobile pellet harvester
Yanyan Ge, Zichao Su, Maohua Xiao, Min Kang, Ruyi Wang, and Qin Zeng
Mech. Sci., 12, 725–733, https://doi.org/10.5194/ms-12-725-2021,https://doi.org/10.5194/ms-12-725-2021, 2021
Short summary
Design and analysis of an innovative flapping wing micro aerial vehicle with a figure eight wingtip trajectory
Shan Jiang, Yong Hu, Qiang Li, Long Ma, Yang Wang, Xiaoqin Zhou, and Qiang Liu
Mech. Sci., 12, 603–613, https://doi.org/10.5194/ms-12-603-2021,https://doi.org/10.5194/ms-12-603-2021, 2021
Short summary

Cited articles

Akiyama, Y., Yamada, Y., and Okamoto, S.: Interaction forces beneath cuffs of physical assistant robots and their motion-based estimation, Adv. Robotics, 29, 1315–1329, https://doi.org/10.1080/01691864.2015.1055799, 2015. 
Andras, T., David, N., Mihaly, J., Istvan, M., Gabor, F., and Denes, Z.: Safe robot therapy: adaptation and usability test of a three-position enabling device for use in robot mediated physical therapy of stroke, in: 11th IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, https://doi.org/10.1109/icorr.2009.5209481, 2009. 
Bertani, R., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., and Calabrò, R. S.: Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis, Neurol. Sci., 38, 1561–1569, https://doi.org/10.1007/s10072-017-2995-5, 2017. 
Cortese, M., Cempini, M., Ribeiro, P. R. D., Soekadar, S. R., Carrozza, M. C., and Vitiello, N.: A Mechatronic System for Robot-Mediated Hand Telerehabilitation, IEEE-ASME T. Mech., 20, 1753–1764, https://doi.org/10.1109/tmech.2014.2353298, 2015. 
Cui, X., Chen, W., Jin, X., and Agrawal, S. K.: Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance, IEEE-ASME T. Mech., 22, 161–172, https://doi.org/10.1109/tmech.2016.2618888, 2017. 
Download
Short summary
Robot-assisted rehabilitation has proven to be effective for improving the motor performance of patients with neuromuscular injuries. Therefore, the main purpose of this paper is to present a new patient-cooperative control framework for an end-effector upper-limb rehabilitation robot that provides robot-assisted training for individuals with neuromuscular disorders. The feasibility of the proposed control scheme is validated via training experiments using five healthy subjects.