Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-495-2022
https://doi.org/10.5194/ms-13-495-2022
Research article
 | 
07 Jun 2022
Research article |  | 07 Jun 2022

Kinematics and control of a cable-driven snake-like manipulator for underwater application

Fufeng Xue and Zhimin Fan

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Study on the contact performance of the variable hyperbolic circular arc tooth trace cylindrical gear with installation errors
Dengqiu Ma, Bing Jiang, Lingli Bao, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 353–366, https://doi.org/10.5194/ms-15-353-2024,https://doi.org/10.5194/ms-15-353-2024, 2024
Short summary
Multi-robot consensus formation based on virtual spring obstacle avoidance
Yushuai Fan, Xun Li, Xin Liu, Shuo Cheng, and Xiaohua Wang
Mech. Sci., 15, 195–207, https://doi.org/10.5194/ms-15-195-2024,https://doi.org/10.5194/ms-15-195-2024, 2024
Short summary
A miniaturized statically balanced compliant mechanism for on-chip ultralow wide-bandwidth vibrational energy harvesting
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024,https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Vibration coupling characteristics and grinding force control of an elastic component grinding system
Yufei Liu, Lang Wu, En Lu, and Jinyong Ju
Mech. Sci., 15, 123–136, https://doi.org/10.5194/ms-15-123-2024,https://doi.org/10.5194/ms-15-123-2024, 2024
Short summary
Influence of a walking mechanism on the hydrodynamic performance of a high-speed wheeled amphibious vehicle
Haijun Xu, Liyang Xu, Yikun Feng, Xiaojun Xu, Yue Jiang, and Xue Gao
Mech. Sci., 14, 277–292, https://doi.org/10.5194/ms-14-277-2023,https://doi.org/10.5194/ms-14-277-2023, 2023
Short summary

Cited articles

Andersson, S. B.: Discretization of a Continuous Curve, IEEE T. Robot., 24, 456–461, https://doi.org/10.1109/tro.2008.917000, 2008. 
Barbieri, L., Bruno, F., Gallo, A., Muzzupappa, M., and Russo, M. L.: Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach, Ocean Eng., 158, 253–262, https://doi.org/10.1016/j.oceaneng.2018.04.032, 2018. 
Brito, M. P., Lewis, R. S., Bose, N., and Griffiths, G.: Adaptive Autonomous Underwater Vehicles: An Assessment of Their Effectiveness for Oceanographic Applications, IEEE T. Eng. Manage., 66, 98–111, https://doi.org/10.1109/tem.2018.2805159, 2019. 
Bulut, Y. and Conkur, E. S.: A real-time path-planning algorithm with extremely tight maneuvering capabilities for hyper-redundant manipulators, Engineering Science and Technology, an International Journal, 24, 247–258, https://doi.org/10.1016/j.jestch.2020.07.002, 2021. 
Cao, Y., Shang, J., Liang, K., Fan, D., Ma, D., and Tang, L.: Review of Soft-bodied Robots, J. Mechan. Eng., 48, 25–33, 2012. 
Download
Short summary
To date, most underwater manipulators have been rigid-link structures with a small number of degrees of freedom and have been unable to perform well in confined spaces. Due to their high dexterity and good adaptability to different environments, snake-like manipulators have strong potential for use in complex underwater applications. In this study, a tip-following algorithm is presented to weave through confined and hazardous spaces along a defined path with high efficiency.