Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-495-2022
https://doi.org/10.5194/ms-13-495-2022
Research article
 | 
07 Jun 2022
Research article |  | 07 Jun 2022

Kinematics and control of a cable-driven snake-like manipulator for underwater application

Fufeng Xue and Zhimin Fan

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Tooth profile design of a novel helical gear mechanism with improved geometry for a parallel shaft transmission
Enyi He and Shihao Yin
Mech. Sci., 13, 1011–1018, https://doi.org/10.5194/ms-13-1011-2022,https://doi.org/10.5194/ms-13-1011-2022, 2022
Short summary
Instability load analysis of a telescopic boom for an all-terrain crane
Jinshuai Xu, Yingpeng Zhuo, Zhaohui Qi, Gang Wang, Tianjiao Zhao, and Tianyu Wang
Mech. Sci., 13, 991–1009, https://doi.org/10.5194/ms-13-991-2022,https://doi.org/10.5194/ms-13-991-2022, 2022
Short summary
A 2 degrees of freedom united propulsive mechanism for amphibious function inspired by frog's hindlimb
Yucheng Tang, Xiaolong Yang, Xiaojin Zhu, Shichao Zhou, Wenbin Zha, Yuxin Sun, and Yulin Wang
Mech. Sci., 13, 437–448, https://doi.org/10.5194/ms-13-437-2022,https://doi.org/10.5194/ms-13-437-2022, 2022
Short summary
Dynamic characteristics of the gear-rotor system in compressed air energy storage considering friction effects
Xinran Wang, Wen Li, Dongxu Hu, Xingjian Dai, and Haisheng Chen
Mech. Sci., 12, 677–688, https://doi.org/10.5194/ms-12-677-2021,https://doi.org/10.5194/ms-12-677-2021, 2021
Short summary
Denim-fabric-polishing robot size optimization based on global spatial dexterity
Wenjie Wang, Qing Tao, Xiaohua Wang, Yuting Cao, and Congcong Chen
Mech. Sci., 12, 649–660, https://doi.org/10.5194/ms-12-649-2021,https://doi.org/10.5194/ms-12-649-2021, 2021

Cited articles

Andersson, S. B.: Discretization of a Continuous Curve, IEEE T. Robot., 24, 456–461, https://doi.org/10.1109/tro.2008.917000, 2008. 
Barbieri, L., Bruno, F., Gallo, A., Muzzupappa, M., and Russo, M. L.: Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a Master-Slave approach, Ocean Eng., 158, 253–262, https://doi.org/10.1016/j.oceaneng.2018.04.032, 2018. 
Brito, M. P., Lewis, R. S., Bose, N., and Griffiths, G.: Adaptive Autonomous Underwater Vehicles: An Assessment of Their Effectiveness for Oceanographic Applications, IEEE T. Eng. Manage., 66, 98–111, https://doi.org/10.1109/tem.2018.2805159, 2019. 
Bulut, Y. and Conkur, E. S.: A real-time path-planning algorithm with extremely tight maneuvering capabilities for hyper-redundant manipulators, Engineering Science and Technology, an International Journal, 24, 247–258, https://doi.org/10.1016/j.jestch.2020.07.002, 2021. 
Cao, Y., Shang, J., Liang, K., Fan, D., Ma, D., and Tang, L.: Review of Soft-bodied Robots, J. Mechan. Eng., 48, 25–33, 2012. 
Download
Short summary
To date, most underwater manipulators have been rigid-link structures with a small number of degrees of freedom and have been unable to perform well in confined spaces. Due to their high dexterity and good adaptability to different environments, snake-like manipulators have strong potential for use in complex underwater applications. In this study, a tip-following algorithm is presented to weave through confined and hazardous spaces along a defined path with high efficiency.