Articles | Volume 13, issue 1
https://doi.org/10.5194/ms-13-41-2022
https://doi.org/10.5194/ms-13-41-2022
Research article
 | 
08 Feb 2022
Research article |  | 08 Feb 2022

Evolutionary multi-objective trajectory optimization for a redundant robot in Cartesian space considering obstacle avoidance

Yong Liu, Xiang Li, Peiyang Jiang, Zhe Du, Zhe Wu, Boxi Sun, and Xinyan Huang

Related authors

Design and error compensation of a 3-degrees-of-freedom cable-driven hybrid 3D-printing mechanism
Sen Qian, Xiao Jiang, Yong Liu, Shuaikang Wang, Xiantao Sun, and Huihui Sun
Mech. Sci., 14, 371–386, https://doi.org/10.5194/ms-14-371-2023,https://doi.org/10.5194/ms-14-371-2023, 2023
Short summary

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Optimization
Kinematic analysis and bearing capacity optimization of fully decoupled two-rotation mechanisms
Sen Wang, Xueyan Han, Haoran Li, Hongyu Xu, and Shihua Li
Mech. Sci., 15, 111–121, https://doi.org/10.5194/ms-15-111-2024,https://doi.org/10.5194/ms-15-111-2024, 2024
Short summary
Multi-objective optimization design of parallel manipulators using a neural network and principal component analysis
Chao Yang, Peijiao Li, Yang Wang, Wei Ye, Tianze Sun, Fengli Huang, and Hui Zhang
Mech. Sci., 14, 361–370, https://doi.org/10.5194/ms-14-361-2023,https://doi.org/10.5194/ms-14-361-2023, 2023
Short summary
Topology optimization for thermal structures considering design-dependent convection boundaries based on the bidirectional evolutionary structural optimization method
Yanding Guo, Dong Wei, Tieqiang Gang, Xining Lai, Xiaofeng Yang, Guangming Xiao, and Lijie Chen
Mech. Sci., 14, 223–235, https://doi.org/10.5194/ms-14-223-2023,https://doi.org/10.5194/ms-14-223-2023, 2023
Short summary
Parameter optimization of a pure electric sweeper dust port by a backpropagation neural network combined with a whale algorithm
Jiabao Pan, Jin Ye, Hejin Ai, Jiamei Wang, and You Wan
Mech. Sci., 14, 47–60, https://doi.org/10.5194/ms-14-47-2023,https://doi.org/10.5194/ms-14-47-2023, 2023
Short summary
Structural design of multi-body heave wave energy conversion system and analysis of energy efficiency of floating body on water surface
Dongsheng Cong, Hao Jing, Ruijun Zhang, Zhongyue Lu, Jianzhong Shang, and Zirong Luo
Mech. Sci., 13, 411–425, https://doi.org/10.5194/ms-13-411-2022,https://doi.org/10.5194/ms-13-411-2022, 2022
Short summary

Cited articles

Arakelian, V., Baron, J.-P. L., and Mottu, P.: Torque minimisation of the 2-DOF serial manipulators based on minimum energy consideration and optimum mass redistribution, Mechatronics, 21, 310–314, https://doi.org/10.1016/j.mechatronics.2010.11.009, 2011. 
Bourbonnais, F., Bigras, P., and Bonev, I. A.: Minimum-Time Trajectory Planning and Control of a Pick-and-Place Five-Bar Parallel Robot, IEEE/ASME T. Mech., 20, 740–749, https://doi.org/10.1109/TMECH.2014.2318999, 2015. 
Cao, H., Sun, S., Zhang, K., and Tang, Z.: Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm, Optik, 127, 9974–9983, https://doi.org/10.1016/j.ijleo.2016.07.078, 2016. 
Chen, D. and Zhang, Y.: A Hybrid Multi-Objective Scheme Applied to Redundant Robot Manipulators, IEEE T. Autom. Sci. Eng., 14, 1337–1350, https://doi.org/10.1109/TASE.2015.2474157, 2017. 
Cheng, F. T., Chen, T. H., Wang, Y. S., and Sun, Y. Y.: Obstacle avoidance for redundant manipulators using the compact QP method, Proceedings IEEE International Conference on Robotics and Automation (Cat. No. 93CH3247-4), Atlanta, GA, USA, 2–6 May 1993, 263, 262–269, https://doi.org/10.1109/ROBOT.1993.292186, 1993. 
Download
Short summary
First, we calculated the trajectory of the end effector of manipulator. This trajectory enables the end effector to reach the desired pose. At the same time, collision detection algorithm was employed to calculate the distance between each link of the manipulator and obstacle. We utilized the multi-objective particle swarm optimization algorithm to optimize the trajectory to minimize joint motor energy consumption and reduce joint velocity and joint impact during the movement of the manipulator.