Ahmad, S., Suman, A., Sidharth, T., Pawar, G., Kumar, V., and Vyas, N. S.:
Structural Integrity Analysis and Life Estimation of a Gas Turbine
Bladed-Disc, Procedia Struct. Inte., 17, 758–765,
https://doi.org/10.1016/j.prostr.2019.08.101, 2019.

Albanesi, A., Fachinotti, V., Peralta, I., Storti, B., and Gebhardt, C.:
Application of the inverse finite element method to design wind turbine
blades, Compos Struct, 161, 160–172, https://doi.org/10.1016/j.compstruct.2016.11.039, 2017.

Albanesi, A., Bre, F., Fachinotti, V., and Gebhardt, C.: Simultaneous
ply-order, ply-number and ply-drop optimization of laminate wind turbine
blades using the inverse finite element method, Compos. Struct., 184, 894–903,
https://doi.org/10.1016/j.compstruct.2017.10.051, 2018.

Bhagi, L. K., Rastogi, V., Gupta, P., and Pradhan, S.: Dynamic Stress
Analysis of L-1 Low Pressure Steam Turbine Blade: Mathematical Modelling and
Finite Element Method, Mater. Today-Proc., 5, 28117–28126,
https://doi.org/10.1016/j.matpr.2018.10.053, 2018.

Brahimi, F. and Ouibrahim, A.: Blade dynamical response based on
aeroelastic analysis of fluid structure interaction in turbomachinery,
Energy, 115, 986–995, https://doi.org/10.1016/j.energy.2016.09.071, 2016.

Chaibakhsh, A. and Ghaffari, A.: Steam turbine model, Simul. Model. Pract. Th.,
16, 1145–1162, https://doi.org/10.1016/j.simpat.2008.05.017, 2008.

Chatterjee, A.: Lumped parameter modelling of turbine blade packets for
analysis of modal characteristics and identification of damage induced
mistuning, Appl. Math. Model., 40, 2119–2133, https://doi.org/10.1016/j.apm.2015.09.020, 2016.

Chen, L.-C. and Lin, G. C. I.: Reverse engineering in the design of turbine
blades – a case study in applying the MAMDP, Robot. Comput. Integr. Manuf., 16,
161–167, https://doi.org/10.1016/s0736-5845(99)00044-7, 2000.

Chen, S. M. and Tan, J. M.: Handling Multicriteria Fuzzy Decision-Making
Problems Based on Vague Set-Theory, Fuzzy Set. Syst., 67, 163–172,
https://doi.org/10.1016/0165-0114(94)90084-1, 1994.

Chen, S. T., Sun, W., Niu, L., Chen, L., and Hou, Y.: Effect of impeller
blade profile on the cryogenic two-phase turbo-expander performance, Appl.
Therm. Eng., 126, 884–891, https://doi.org/10.1016/j.applthermaleng.2017.07.139, 2017.

Choi, W., Kang, H., and Baek, T.: A turbine-blade balancing problem, Int. J.
Prod. Econ., 60-1, 405–410, https://doi.org/10.1016/S0925-5273(98)00164-9, 1999.

Diamond, D. H., Heyns, P. S., and Oberholster, A. J.: Improved Blade Tip
Timing measurements during transient conditions using a State Space Model,
Mech. Syst. Signal Pr., 122, 555–579, https://doi.org/10.1016/j.ymssp.2018.12.033, 2019.

Dulau, M. and Bica, D.: Mathematical modelling and simulation of the
behaviour of the steam turbine, Proc. Tech., 12, 723–729,
https://doi.org/10.1016/j.protcy.2013.12.555, 2014.

Eleftheriou, K. D., Efstathiadis, T. G., and Kalfas, A. I.: Stator Blade
Design of an Axial Turbine using Non-Ideal Gases with Low Real-Flow Effects,
Enrgy. Proced., 105, 1606–1613, https://doi.org/10.1016/j.egypro.2017.03.515, 2017.

Fadl, M., Stein, P., and He, L.: Full conjugate heat transfer modelling for
steam turbines in transient operations, Int. J. Therm. Sci., 124, 240–250,
https://doi.org/10.1016/j.ijthermalsci.2017.10.025, 2018.

Francesco, G., Federico, M., and Adriano, M.: CFD modelling of the
condensation inside a cascade of steam turbine blades: comparison with an
experimental test case, Enrgy. Proced., 126, 730–737,
https://doi.org/10.1016/j.egypro.2017.08.306, 2017.

Gau, W. L. and Buehrer, D. J.: Vague Sets, IEEE T. Syst. Man. Cyb., 23,
610–614, https://doi.org/10.1109/21.229476, 1993.

Hashemian, A., Lakzian, E., and Ebrahimi-Fizik, A.: On the application of
isogeometric finite volume method in numerical analysis of wet-steam flow
through turbine cascades, Comput. Math. Appl., 79, 1687–1705,
https://doi.org/10.1016/j.camwa.2019.09.025, 2020.

Hou, Y. H., Zhang, Y., and Zhang, D. H.: Geometric error analysis of
compressor blade based on reconstructing leading and trailing edges
smoothly, Proc. Cirp., 56, 272–278, https://doi.org/10.1016/j.procir.2016.10.082, 2016.

Hou, Y. H., Zhang, D. H., Mei, J. W., Zhang, Y., and Luo, M.: Geometric
modelling of thin-walled blade based on compensation method of machining
error and design intent, J. Manuf. Process., 44, 327–336,
https://doi.org/10.1016/j.jmapro.2019.06.012, 2019.

Jang, H. J., Kang, S. Y., Lee, J. J., Kim, T. S., and Park, S. J.:
Performance analysis of a multi-stage ultra-supercritical steam turbine
using computational fluid dynamics, Appl. Therm. Eng., 87, 352–361,
https://doi.org/10.1016/j.applthermaleng.2015.05.007, 2015.

Jiang, X. Q., Lin, A. Q., Malik, A., Chang, X. Y., and Xu, Y. Y.: Numerical
investigation on aerodynamic characteristics of exhaust passage with
consideration of multi-factor components in a supercritical steam turbine,
Appl. Therm. Eng., 162, 114085, https://doi.org/10.1016/j.applthermaleng.2019.114085, 2019.

Kamoun, B., Afungchui, D., and Abid, M.: The inverse design of the wind
turbine blade sections by the singularities method, Renew. Energ., 31,
2091–2107, https://doi.org/10.1016/j.renene.2005.10.007, 2006.

Kaneko, Y., Kanki, H., and Kawashita, R.: Steam turbine rotor design and
rotor dynamics analysis, in: Advances in Steam Turbines for Modern Power
Plants, edited by: Tanuma, T., Woodhead Publishing, 127–151, 2017.

Kickert, W.: Fuzzy Theories on Decision-making: A Critical Review, in: Frontiers in Systems Research, Vol. 3, Leiden, Boston, London, Martinus Nijhoff Social Sciences Division, 1978.

Kim, B., Kim, W., Lee, S., Bae, S., and Lee, Y.: Developement and
verification of a performance based optimal design software for wind turbine
blades, Renew. Energ., 54, 166–172, https://doi.org/10.1016/j.renene.2012.08.029, 2013.

Kollar, L. E. and Mishra, R.: Inverse design of wind turbine blade sections
for operation under icing conditions, Energ. Convers. Manage., 180, 844–858,
https://doi.org/10.1016/j.enconman.2018.11.015, 2019.

Li, L., Jiao, J. K., Sun, S. Y., Zhao, Z. A., and Kang, J. L.: Aerodynamic
shape optimization of a single turbine stage based on parameterized
Free-Form Deformation with mapping design parameters, Energy, 169, 444–455,
https://doi.org/10.1016/j.energy.2018.12.031, 2019.

Lucacci, G.: Steels and alloys for turbine blades in ultra-supercritical
power plants, in: Materials for Ultra-Supercritical and Advanced
Ultra-Supercritical Power Plants, edited by: Di Gianfrancesco, A., Woodhead
Publishing, 175–196, 2017.

Moheban, M. and Young, J. B.: A study of thermal nonequilibrium effects in
low-pressure wet-steam turbines using a blade-to-blade time-marching
technique, Int. J. Heat Fluid Flow, 6, 269–278, https://doi.org/10.1016/0142-727x(85)90061-x,
1985.

Noori Rahim Abadi, S. M. A., Ahmadpour, A., Abadi, S. M. N. R., and Meyer,
J. P.: CFD-based shape optimization of steam turbine blade cascade in
transonic two phase flows, Appl. Therm. Eng., 112, 1575–1589,
https://doi.org/10.1016/j.applthermaleng.2016.10.058, 2017.

Obert, B. and Cinnella, P.: Comparison of steady and unsteady RANS CFD
simulation of a supersonic ORC turbine, Enrgy. Proced., 129, 1063–1070,
https://doi.org/10.1016/j.egypro.2017.09.122, 2017.

Pascoa, J. C., Mendes, A. C., and Gato, L. M. C.: A fast iterative inverse
method for turbomachinery blade design, Mech. Res. Commun., 36, 630–637,
https://doi.org/10.1016/j.mechrescom.2009.01.008, 2009.

Prabhunandan, G. S. and Byregowda, H. V.: Dynamic Analysis of A Steam
Turbine With Numerical Approach, Mater. Today-Proc., 5, 5414–5420,
https://doi.org/10.1016/j.matpr.2017.12.128, 2018.

Saeed, H. A. H., Elmekawy, A. M. N., and Kassab, S. Z.: Numerical study of
improving Savonius turbine power coefficient by various blade shapes, Alex
Eng. J., 58, 429–441, https://doi.org/10.1016/j.aej.2019.03.005, 2019.

Sarkar, D. K. (Ed.): Steam Turbines, in: Thermal Power Plant, Elsevier, Amsterdam, the Netherlands, 189–237, 2015.

Shannon, C. E.: A Mathematical Theory of Communication, Bell. Syst. Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.

Shukla, A. and Harsha, S. P.: An experimental and FEM modal analysis of
cracked and normal Steam Turbine Blade, Mater. Today-Proc., 2, 2056–2063,
https://doi.org/10.1016/j.matpr.2015.07.191, 2015.

Tanuma, T.: Development of last-stage long blades for steam turbines, in:
Advances in Steam Turbines for Modern Power Plants, edited by: Tanuma, T.,
Woodhead Publishing, 279–305, 2017.

Wood, N. B. and Morton, V. M.: Inlet angle distribution of last stage
moving blades for large steam turbines, Int. J. Heat Fluid Flow, 5, 101–111,
https://doi.org/10.1016/0142-727x(84)90028-6, 1984.

Yi, G. D., Zhou, H. F., Qiu, L. M., and Wu, J. D.: Geometry-Load Based
Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine
Blade, Energies, 13, 2471, https://doi.org/10.3390/en13102471, 2020a.

Yi, G. D., Zhou, H. F., Qiu, L. M., and Wu, J. D.: Hot Blade Shape
Reconstruction Considering Variable Stiffness and Unbalanced Load in a Steam
Turbine, Energies, 13, 835, https://doi.org/10.3390/en13040835, 2020b.

Zhu, X. C., Chen, H. F., Xuan, F. Z., and Chen, X. H.: Cyclic plasticity
behaviors of steam turbine rotor subjected to cyclic thermal and mechanical
loads, Eur. J. Mech. A-Solid, 66, 243–255, https://doi.org/10.1016/j.euromechsol.2017.07.012,
2017.