Articles | Volume 9, issue 2
https://doi.org/10.5194/ms-9-259-2018
https://doi.org/10.5194/ms-9-259-2018
Research article
 | 
15 Aug 2018
Research article |  | 15 Aug 2018

Location of unbalance mass and supporting bearing for different type of balance shaft module

Chan-Jung Kim

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Tooth profile design of a novel helical gear mechanism with improved geometry for a parallel shaft transmission
Enyi He and Shihao Yin
Mech. Sci., 13, 1011–1018, https://doi.org/10.5194/ms-13-1011-2022,https://doi.org/10.5194/ms-13-1011-2022, 2022
Short summary
Instability load analysis of a telescopic boom for an all-terrain crane
Jinshuai Xu, Yingpeng Zhuo, Zhaohui Qi, Gang Wang, Tianjiao Zhao, and Tianyu Wang
Mech. Sci., 13, 991–1009, https://doi.org/10.5194/ms-13-991-2022,https://doi.org/10.5194/ms-13-991-2022, 2022
Short summary
Kinematics and control of a cable-driven snake-like manipulator for underwater application
Fufeng Xue and Zhimin Fan
Mech. Sci., 13, 495–504, https://doi.org/10.5194/ms-13-495-2022,https://doi.org/10.5194/ms-13-495-2022, 2022
Short summary
A 2 degrees of freedom united propulsive mechanism for amphibious function inspired by frog's hindlimb
Yucheng Tang, Xiaolong Yang, Xiaojin Zhu, Shichao Zhou, Wenbin Zha, Yuxin Sun, and Yulin Wang
Mech. Sci., 13, 437–448, https://doi.org/10.5194/ms-13-437-2022,https://doi.org/10.5194/ms-13-437-2022, 2022
Short summary
Dynamic characteristics of the gear-rotor system in compressed air energy storage considering friction effects
Xinran Wang, Wen Li, Dongxu Hu, Xingjian Dai, and Haisheng Chen
Mech. Sci., 12, 677–688, https://doi.org/10.5194/ms-12-677-2021,https://doi.org/10.5194/ms-12-677-2021, 2021
Short summary

Cited articles

Gere, J. M. and Timoshenko, S. P.: Mechanics of materials: Singapore, International Thomson Editores, 1999. 
Hafidi, A. E., Martin, B., Loredo, A. and Jego, E.: Vibration reduction on city buses: Determination of optimal position of engine mounts, Mechan. Syst. Sig. Process., 24, 2198–2209, https://doi.org/10.1016/j.ymssp.2010.04.001, 2010. 
Heisler, H.: Vehicle and Engine Technology: 2nd Edn., Warrendale, SAE International, 1998. 
Huegen, S., Warren, G., and Menne, R.: A New 2.3L DOHC Engine with Balance Shaft Housing, Proceedings of SAE technical paper, 970921, https://doi.org/10.4271/970921, 1997.  
Ishikawa, M., Nakamura, Y., Kodama, N., and Hosoi, H.: Development of resin gear balance shaft system for 2AZ-FE engine, JSAE Rev., 23, 27–32, https://doi.org/10.1016/S0389-4304(01)00164-3, 2002. 
Download
Short summary
The conceptual design of balance shaft was very important process as how to locate the unbalance masses and corresponding supporting bearings. In this paper, the optimal conceptual balance shaft model was derived by using proposed objective functions for an inline 3-cylinder engine and an inline 4-cylinder one, respectively. Two kinds of optimal model were derived from simulations and efficient design guidelines was finally explained with design flowchart.