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The dynamic characteristics of balance shaft module is controlled by the design of rotating parts as
how to allocate both a unbalance mass and a supporting bearing so that the concept design of a rotor structure
is the key issue on determining the overall quality of dynamic performance as well as fatigue resistance. Even
the design on balance shaft has some limitation from the lay-out of a vehicle engine system, there is still chance
to enhance the reliability of the balance shaft module by the promising design model of the rotor structure
including support bearing locations. In this paper, an optimal location of unbalance mass and supporting bearing
is proposed to make an efficient conceptual design using an objective function to minimize a bending deformation
of rotor as well as a reaction force at supporting bearing. In addition, the application of design optimization of
a balance shaft model is explained using an in-house program for inline 3-cylinder and inline 4-cylinder engine,

respectively.

Vehicle engine produces necessary energy enough to drive
the responding vehicle system as a prime goal. However, it
also induces an inertia force or moment as a side effect dur-
ing converting the reciprocating motion of pistons into rotat-
ing motion of crankshaft and the exact phenomenon is deter-
mined by the type of engine as well as kinematics upon sev-
eral sub-components of engine system (Heisler, 1998; Stone
and Ball, 2004; Serrano et al., 2015; Lui et al., 2015). Several
countermeasures were previously proposed to control the ex-
citation from vehicle engine using additional device (Lui et
al., 2015; Lin et al., 2017; Shangguan et al., 2016; Hafidi et
al., 2010) and balance shaft is one of novel solution among
them. Balance shaft module which is generally located un-
der the engine block is aimed for reducing the indispensable
but unexpected vibrations as generating equivalent vibrations
having an opposite direction (Heisler, 1998; Stone and Ball,
2004). Since the fundamental role of balance shaft module
can be conducted by the rotating unbalance mass on balance
shaft while a target engine is under operation, the prior in-
terest should be focused on the design of balance shaft in-
cluding a strategy on unbalance mass as well as supporting
bearings. The response of rotor dynamics, shown as reaction

forces on bearing or bending deformation, will be dependent
on the condition of shape of balance shaft or the location of
unbalance mass, even though the unbalances are fixed as cer-
tain value (Stone and Ball, 2004; Ishikawa et al., 2002; Suh
et al., 2000; Meek and Roberts, 1998; Huegen et al., 1997).
Recently, Kim et al. (2012) proposed the optimal location of
both a supporting bearing and a deflection of balance shaft
by introducing the objective function to minimize interesting
energy terms, both the elastic strain energy and the kinematic
energy of a balance shaft (Kim et al., 2012). However, the
optimal process was limited for the inline 4-cylinde engine
only to cope with reciprocal force from a secondary inertia
part. In addition, the kinematic energy in objective function
did not directly deal with the structural issue of a balance
shaft because the energy from a mass moment of inertia was
introduced in order to save the driving torque during opera-
tion. On the other hand, the objective function in this study
directly tackle the structural issue of a balance shaft; the dif-
ference between both of bearing reaction forces was consid-
ered at inline 4-cylinder engine model and the fundamental
resonance frequency was used at inline 3-cylinder model, re-
spectively.
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In this paper, the design strategy is focused on the unbal-
ance shaft which is most important item throughout the over-
all design process. New method can obtain the optimal model
of balance shaft that minimizes the burden issues such as
bearing force and bending deformation as well as induces the
inertia force or moment equivalent to that of engine part dur-
ing the service loading or under operation. Author suggests
the formulation of optimal design about balance shaft by in-
troducing the objective function which is subjective to the in-
line 3-cylinder and inline 4-cylinder engine respectively, for
the sake of deriving the optimal plan of balance shaft. Also,
the exclusive program is proposed as a practical application
to assist the concerning design engineer about balance shaft
in a field work.

Multi-order vibrations are produced by the linkage mecha-
nism at the single piston-crankshaft connecting point as con-
verting the reciprocal movement into rotating one and cor-
responding inertia force (Farr) can be expressed as Eq. (1)
as (Heisler, 1998; Stone and Ball, 2004; Meek and Roberts,
1998):
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Here, mp is mass of reciprocal part, r is radius of
crankshaft, / is length of connecting rod and w and 6 is an-
gular velocity and angle of crankshaft, respectively. For in-
line 4-cylinder engine, primary term is self-balanced during
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Equivalent balance shaft model with bearing reaction in
inline 4-cylinder engine.

the rotation of crankshaft and higher order terms expect sec-
ondary one are small enough to be neglected. And any mo-
ments are well balanced owing to the kinematics of inline 4-
cylinders. So, the coupling inertia force can be approximated
by the secondary term in Eq. (2) as:
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The simplified engine module kinematics including bal-
ance shaft module is described in Fig. 1 (Kim et al., 2012).
To cancel out the second order vibration, it can be balanced
by a pair of counter-rotating balance shafts at twice the an-
gular velocity of the crankshaft.

The unbalance quantity is determined by the secondary in-
ertia force induced by the given engine specification and the
expression of unbalance quantity is denoted in Eq. (3) with
respect to the relation in Eq. (4) as:
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Here, my, and ry are the equivalent mass and radius of ro-
tation in unbalance quantity, respectively. If the balance shaft
module is simplified with single rotor model, the correspond-
ing function (W) that is equivalent to the inertia force should
be dependent on the rotating angle of crankshaft and thereby
it can be formulated by the Eq. (5) as:

W mpr2w2
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Using the Eq. (5), the corresponding bearing reaction force
could be derived from the equivalent single rotor system
shown in Fig. 2. The bearing reaction force at each location
is formulated by the Eq. (5).
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Here, a, b are positional variables regarding the position
of the unbalance mass.
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Geometry of engine module with balance shaft module
at 3-cylinder engine.

The bending case caused by inertia force between both
sides of bearing is represented by Fig. 2. It could com-
prise the entire bending situation of inline 4-cylinder engine.
Using the boundary condition of equivalent rotor model in
Fig. 2, the corresponding deformation variable, y;, y» could
be formulated by Egs. (7) and (8), respectively (Gere and
Timoshenko, 1999). In addition, the total deflection of the
balance shaft (y4C (x)) can be formulated with respect to the
location of unbalance mass, x, as shown in Eq. (9).
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Here, E is an elastic proportional coefficient, / is the sec-
ond moment of inertia about the equivalent rotor’s section
and [ is the total length of rotor system.

With 120 (degree) firing interval, the primary and secondary
inertia forces are balanced at the inline 3-cylinder engine.
However, moments are not balanced in itself in the inline
3-cylinder engine and then, it needs a balance shaft mod-
ule that produces moments with opposite phase. The primary
moments (M) induced by the reciprocal inertia forces (see
Eq. 1) can be written by Eq. (10) considering the overall ge-
ometry of engine module plotted in Fig. 3. The other mo-
ments are ignored here because primary term is dominant
during operation as well as it is hard to balance other term
simultaneously with single balance shaft module (Heisler,
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Equivalent balance shaft model with bearing reaction in
inline 3-cylinder engine (first bearing: black triangle, second bear-
ing: white triangle).

1998; Stone and Ball, 2004; Suh et al., 2000).
1 2 0 0
My = Smpro [z cos(9 — 120°) + 21 cos(8 — 240 )]
1
= E\/gmprwzl, (10)

The unbalance quantity (Mp) is determined by the similar
method in inline 4-cylinder engine (see Eq. 4) as:

My = Mg
(11)

1
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Here, I3(= x1 4+ x2) is length of balance shaft, mg, rp is
equivalent mass and radius of unbalance, respectively. Hence
the resultant quantity can be formulated as Eq. (12) as:

\/§mprl
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Since the balance shaft should be designed to make a pri-
mary moment without any inertia forces during rotating mo-
tion, two identical unbalance quantities locates in a opposite
phase in a single rotor. The possible type of equivalent ro-
tor with unbalance mass and bearing could be classified into
three cases as shown in Fig. 4.

Even though the type of equivalent rotor exists for three
cases, the bearing reaction force (fc) against the given un-
balance quantity has a unique expression in Eq. (13) as:

V3mprl 5 (L.
_ Y3mprl ). 13
fc T (Ls) (13)
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Here, L, is a distance between each bearing and L} is a dis-
tance between each unbalance mass. The bending deforma-
tion in inline 3-cylinder is much complex than that of inline
4-cylinder one because it is possible to make several combi-
nations of two unbalance masses under same moment as seen
in Fig. 4. Requiring bending case which could not completely
formulated by the previous bending case (see Eqs. 7 and 8)
is determined by the ideal bending situation given in Fig. 5.

Here, W is inertia force induced at the edge of rotor. Given
the inertia force and boundary condition, the corresponding
deformation variable, y3, y4, is formulated by Egs. (14) and
(15), respectively (Gere and Timoshenko, 1999). In addition,
the total length of the balance shaft (y3c (x1, x2)) at one-end
unbalance can be derived with the both positions of support-
ing bearing, first at x3 and second at x4, as shown in Eq. (16).
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Given the same inertia force or moment, it is recommended
that the bearing reaction force should be kept minimal as long
as one can. It is also suitable case if the bending deforma-
tion has a minimal value. However, the ideal situation which
satisfies the minimal condition for both of items simultane-
ously is impossible in a physical view since the high level
energy triggered from centrifugal force should be exhausted
by bearing reaction force or bending deformation in order to
remain the system stable. The optimal strategy on balance
shaft is focused on trading off the inconsistent variables with
unique weighting function for each problem, and finally, all
the design parameters should not excess a guideline in design
specification.
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Variation of each state variable at inline 4-cylinder en-
gine.

Considering the two inconsistent items, bearing reaction
force and bending deformation, objective function is formu-
lated to minimize the cost of both items within a single ro-
tor model as assuming that both of items are state variables
and the position variable, x, is design parameter as shown in
Eq. (17). State variables are normalized to restrain the affec-
tion of physical magnitude to the result of objective function
and the constraint of parameter variable is written in Eq. (18).
Since the bearing reaction functions are function of rotation
of crankshaft (see Eq. 5), current reaction force is considered
at the maximum value (6 = ni).

J—m ( Ax) )2+( B(x,nm) )w an
=mn norm(A(x)) norm(B(x, nr)) ’
0<x <Ly, (18)
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Here, A(x) and B(x) are state variables that denotes bend-
ing deformation (see Eq. 9) and difference between both of
bearing reaction forces, respectively, and Ly, is total length
of given rotor. The variable, w, in a second term of Eq. (17)
is weighting factor which is determined by the purpose of
rotor design, i.e. “0” means the design is only focused on
the minimal cost of bending deformation and “certain value
much greater than 2” means opposite design condition, only
considering the bearing reaction force. Hence, the value of w
is generally assigned near “2” to consider all state variables
except a special requirement in design specification.

To verify the methodology of design strategy, the bearing
reaction force and bending deformation is calculated in an
equivalent rotor model in Fig. 2. The trace of two state vari-
ables are recorded as varying the design variable, x and the
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value of w is assigned for “2” in an objective function. The
state variables and the corresponding objective function are
obtained according to the value of x and then, all of normal-
ized variables are plotted in Figs. 6 and 7, respectively.

The two state variables shows a conflicting trend as vary-
ing the position of unbalance mass from Fig. 6 and the pro-
posed optimal function holds a global optimal point from
Fig. 7. It can figure out that the optimal ratio of unbalance
mass is 67 % in the total rotor length.

It is better to define a representative equivalent rotor model
among three cases in Fig. 4 before formulating an optimal
function owing to several design parameters are given on
making an equivalent rotor model. Assuming that all of ro-
tors have a same unbalance quantity, the “type III” model
(see Fig. 5) is selected as the representative one under con-
ducting an analysis afterward, because such a model is most
widely used in a field situation.

Bending deformation and bearing reaction force can be
satisfied simultaneously as being the most appropriate condi-
tion in a single rotor model, if the left bearing is approached
to the left unbalance mass as well as the right bearing is po-
sitioned near the right unbalance bearing. The former case
can be proven by the relation, “bending case I”” and “bending
case II” in Eqs. (12)—(13), and the latter can be made sense
by the Eq. (11), given the same moment from a rotor model.
However, the current model which seems to be optimal could
bring out unintended situation by making the system unsta-
ble, because the structural bending stiffness in itself becomes
minimal and then, it follows to clamp down the fundamental
frequency as low as minimal.

During the general design process of balance shaft, it will
focus on the shape optimization given the same unbalance
quantity and the variation of structural stiffness is more vul-
nerable than that of structural mass. Hence, the fundamen-
tal frequency is a function of structural stiffness with little
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recognition of mass factor. Assuming that a balance shaft is
simplified by a beam model, the structural stiffness can be
expressed by the matrix shown in Eq. (20) and the corre-
sponding element is given in Eq. (21) (Rao, 1983; Kramer,
1993).

ai aj —aj aj
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Here, G, « and [ are elastic shear coefficient, shear coef-
ficient and length of a beam, respectively. In Eq. (20), the
first and third diagonal elements are the translational terms
and second and forth diagonal elements are related to the ro-
tational motion. Since the fundamental frequency was most
sensitive to the first diagonal term (Kim, 2017), the element



ay is considered among several elements in stiffness matrix.
Since both of variables, proportional elastic coefficient (E)
and second moment of inertia (/) in section of beam, are
constant, the resonance frequency (wg) can be written by the
Eq. (14) as:

wy = C\/ZI’ (22)

Here, c is proportional coefficient. It can figure out from
Eq. (22) that the resonance frequency is inverse proportional
to the length of rotor and the corresponding rotor model is an
unsatisfactory case for the issue of bending deformation and
bearing reaction force. To tackle this problem in a prelimi-
nary step of rotor design, objective function is formulated in
Eq. (23) with the boundary condition of variables in Eq. (24).
Since both of items, bearing reaction force and bending de-
formation, have a similar tendency in a single rotor model,
the variable on bearing reaction force is omitted under the
formulation of objective function in Eq. (24) and the variable
on resonance frequency is expressed using the equation in
(25).
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Here, ¢’ is proportional coefficient, y and z are the po-
sitions of first bearing and the second unbalance mass, re-
spectively. In addition, C and D are state variables which
represent the bending deformation and the fundamental res-
onance frequency, respectively. And w’ is the selecting factor
that weights the degree of fundamental resonance frequency
against the bending deformation. Hence, the bending defor-
mation is only considered under the design process with the
value of w’ is approaching zero and the situation turns oppo-
site when w’ is far beyond of “2”. Without a special instruc-
tion in design specification, it is most accepted that the value
of w’ is selected near “2” aiming for trade off both of issues
at the same time.

It is recorded the trace of objective function including state
variables as varying the design variables. The position of first
bearing is fixed (y = 0) near the first unbalance mass since a
large of bending deformation of rotor is expected near edge
of rotor with first unbalance quantity (see Eq. 16). As varying
the position of second unbalance mass, z, the trace of state
variables in objective function are monitored and weighting
factor, r’ is set to “2”. It is plotted the traces of items, both

state variables and objective function, along the position of
second unbalance mass in Figs. 8 and 9, respectively.

The both of state variables, bending deformation and fun-
damental resonance frequency, shows a opposite trend as
varying the design variable (z) and such a combining of two
state variables induces a global optimum in a proposed ob-
jective function. The optimal ratio of second unbalance mass
position is 69 % in the total length of rotor.

The optimal location of unbalance mass of the 4-cylinder en-
gine was derived as 67 % in the total length of rotor and that
result is similar derived from the previous study. As follow-
ing the previous work (Kim et al., 2012), the location of un-
balance mass was 57 % and 100 % in the total span of two
supporting bearing if the capacity of one supporting bearing
was supposed to be 80 % and 100 %, respectively. Here, the
mass ratio between a symmetric part and an asymmetric part
was selected for 3 or more. As following the optimal results
from the previous job, the same optimal location of unbal-
ance mass, 67 %, can expected approximately at 85 % if the
linear relationship of optimal location is allowable.

However, the formulation of objective function in this
study was somewhat different from the previous work. First,
the current objective function were formulated from the ro-
tor deflection and the difference of bearing force; whereas the
elastic strain energy and the kinematic energy of the moment
of inertia was applied in the previous study. This means the
capacity of the supporting bearing was assumed to be origi-
nally limited one in this study so that both of supporting bear-
ings should share the required inertia force from the inline
4-cylinder engine. So, if the capacity of supporting bearing
was not sufficiently allowable over the required bearing force
from an unbalance mass during operation, it is reasonable to
accept the result from the proposed objective function. Sec-
ond, the location of supporting bearing was fixed at the end
of shaft length at current objective function; whereas con-
sidered as variable in the previous formula. The variation of
the optimal location of supporting bearing was found to be
less sensitive according to the different loading capacity of a
supporting bearing (Kim et al., 2012), it is still reasonable to
calculate of the optimal location of unbalance mass while the
location of supporting bearing is fixed at certain location. So
it can be revealed that the proposed optimal design strategy
is efficient method for the balance shaft of 4-cylinder engine
when the capacity of the supporting bearing was not fully
allowable over the required bearing load.

The optimal location of unbalance masses of the balance
shaft for 3-cylinder engine was not possible to discuss with
previous studies. No previous works dealt with the optimal
location of unbalance mass or supporting bearing in a bal-
ance shaft component. However, the optimal location of sec-
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ond unbalance mass at 69 % in the total length of rotor may
be reasonable with the proposed objective function since a
consistent objective function was developed by considering
the nature of balance shaft in a 3-cylinder engine. The funda-
mental resonance frequency of a balance shaft is important
issue in the 3-cylinder engine since at least one of unbal-
ance mass is located at the end of rotor (see Fig. 4) as rule of
thumb so that the fundamental frequency of balance shaft for
3-cylinder engine is far less than that for 4-cylinder engine.
The proposed objective function was considered the stiffness
of rotor system so that the dynamic issue from a 3-cylinder
engine model was solved efficiently.

The optimal model of balance shaft derived in this study
was definitely dependent on the type of combustion engine
so that the conclusions for two different engine type will be
changed if another type of combustion engine is considered.
However, the proposed objective functions have capability to
cope with both secondary inertia forces and moments, the
calculation of optimal model of balance shaft still valid for
another engine case under different magnitude of loading in
Eq. (2) or in Eq. (10).

Applying for the fruit of research on balance shaft with ef-
ficiency, design program is developed as plugging the core
formulation of optimal shaft design as well as other design
parameters. After the equivalent rotor model is determined
from the specification of corresponding engine module, the
interesting state variables, like bearing reaction force and
bending deformation, could be calculated according to the
design variables. Especially, the optimal position of bearing

and equivalent unbalance mass is predicted with the knowl-
edge of optimal design formulation and it renders fundamen-
tal information on the proceeding of the detail design of bal-
ance shaft and its housing. The weighting of design param-
eters can be adjusted with weighting factor applied in ob-
jective function for two balance shaft. The overall optimal
process of the balance shaft is explained for different engine
type by the flow chart in Fig. 10.

Considering the total design process of balance shaft mod-
ule, this study dealt with the preliminary step of balance
shaft’s design as how to locate the unbalance masses and cor-
responding bearings before the detail geometrical shape of
balance shaft does not determined yet. It is selected for two
cases of engine type, an inline 3-cylinder engine and an inline
4-cylinder one, and both of the required inertia force and mo-
ment were derived from the kinematic relationship between
an engine and a balance shaft module. The equations related
to the state variables were derived from the dynamics of the
balance shaft as well as the basic beam theory and then, the
objective functions were formulated using the related equa-
tions, which are bearing reaction force, bending deformation
and fundamental resonance frequency. As following the sim-
ulation of balance shaft model, the proposed objective func-
tions were confirmed to find global minimum that indicates
the optimal locations of design parameters. Those optimal
results are directly related to the conceptual design of the
balance shaft for two different engine types. In particular, the
optimal result of the inline 4-cylinder engine was compared



with the result from previous study and it revealed the opti-
mal position of the unbalanced mass at 67 % in total length
was well matched with the previous results when the load-
ing capacity of supporting bearing was set for approximately
85 %. Hence, the proposed optimal design strategies for two
engine types were proven to be efficient one for the selection
of both a supporting bearing and an unbalance mass. The de-
sign flowcharts of a balance shaft were illustrated in the final
chapter to guide the determination of the optimal positions.

Data can be made available upon reasonable re-
quest. Please contact Chan-jung Kim (cjkim@pknu.ac.kr).
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