Articles | Volume 16, issue 1
https://doi.org/10.5194/ms-16-87-2025
© Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.
Interactive trajectory prediction for autonomous driving based on Transformer
Related authors
Cited articles
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., and Savarese, S.: Social LSTM: Human Trajectory Prediction in Crowded Spaces, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016, IEEE, 961–971, https://doi.org/10.1109/CVPR.2016.110, 2016.
Bhat, M., Francis, J., and Oh, J.: Trajformer: Trajectory Prediction with Local Self-Attentive Contexts for Autonomous Driving, arXiv [preprint], https://doi.org/10.48550/arXiv.2011.14910, 30 November 2020.
Chang, M. F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., and Ramanan, D.: Argoverse: 3D Tracking and Forecasting With Rich Maps, arXiv [preprint], https://doi.org/10.48550/arXiv.1911.02620, 6 November 2019.
Cui, Z., Henrickson, K., Ke, R., and Wang, Y.: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting, IEEE T. Intell. Transp., 21, 4883–4894, https://doi.org/10.1109/TITS.2019.2950416, 2020.
Dai, S., Li, L., and Li, Z.: Modeling vehicle interactions via modified LSTM models for trajectory prediction, IEEE Access, 7, 38287–38296, https://doi.org/10.1109/ACCESS.2019.2907000, 2019.