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Trajectory planning has undergone remarkable strides in recent times, especially in the behavior pre-
diction of traffic participants. Given that strong coupling conditions such as pedestrians, vehicles, and roads
restrict the interactive behavior of autonomous vehicles and other traffic participants, it has become critical to
design a trajectory prediction algorithm based on traffic scenarios for autonomous-driving technology. In this
paper, we propose a novel trajectory prediction algorithm based on Transformer networks, a data-driven method
that ingeniously harnesses dual-input channels. The rationale underlying this approach lies in its seamless fu-
sion of scene context modeling and multi-modal prediction within a neural network architecture. At the heart
of this innovative framework resides the multi-headed attention mechanism, ingeniously deployed in both the
agent attention layer and the scene attention layer. This finessing not only captures the profound interdependence
between agents and their surroundings but also imbues the algorithm with a better real-time predictive prowess,
enhancing computational efficiency. Eventually, substantial experiments with the Argoverse dataset will demon-
strate improved trajectory accuracy, with the minimum average displacement error (MADE) and minimum final

displacement error (MFDE) being reduced by 12 % and 31 %, respectively.

Intelligent transportation systems for traffic control and man-
agement are implemented to manage unexpected traffic situ-
ations while boosting road safety. Specifically, effective tra-
jectory planning of autonomous vehicles requires the ability
to forecast the potential behavior of traffic participants with
high accuracy in order to make safe decisions. The ques-
tion of how to improve the prediction accuracy of drivers’
behaviors has spurred widespread research efforts. The ac-
tivities of traffic agents are invariably multi-modal (Yao et
al., 2021), predominantly affected by two kinds of factors:
external environmental factors, such as road constraints and
rules, and the driver’s behavior intention, such as overtak-
ing and changing lanes. It should be noted that the predicted
trajectories exhibit strong nonlinearity over an extended pe-
riod with regard to the uncertainty in individual behaviors

(Min et al., 2020). Accurate long-term prediction, a promis-
ing strategy for autonomous vehicles, enables autonomous
vehicles to promptly judge the target behavior, react to po-
tential changes in the surrounding environment, and boost
overall safety and comfort.

Model-based methods (Neto et al., 2018) can ensure short-
term prediction accuracy. However, for long-term prediction
of complex scenarios, if there is insufficient consideration of
road scenarios or a lack of prior knowledge regarding driv-
ing, the accuracy of predictions will be significantly reduced,
and the adaptability to different scenarios will also be af-
fected. In long-term prediction, the behavior intention, and
the dynamic behavior of the target body may change over
time. At this point, the behavior of the target body is greatly
influenced by its intention and surrounding environmental in-
formation (Jeong et al., 2020). The temporal correlation be-



tween current and previous time steps weakens in data, lead-
ing to an increased error rate in long-term prediction. This
poses a major challenge in achieving accurate predictions.

A more accurate prediction made possible by an improved
model serves as a significant indicator of system perfor-
mance. In light of these challenges, we concentrate on the
Transformer and VectorNet models (Gao et al., 2020), which
is adept at capturing long-term interactions and scene con-
text modeling. The improved prediction model is illustrated
in Fig. 1. Drawing from map data and participant trajecto-
ries, it adeptly captures the interactions between the subject
and the road, achieving high-precision prediction of the sub-
ject’s future movement trajectory.

The proposed algorithm has been rigorously assessed uti-
lizing the Argoverse dataset, which encapsulates an extensive
array of intricate traffic scenarios, each representing real-
world driving conditions. Experimental results demonstrate
enhanced trajectory accuracy compared to existing models,
with a 12 % reduction in the minimum average displacement
error (MADE) and a 31 % reduction in the minimum final
displacement error (MFDE).

The main contributions of the paper are as follows:

1. A novel neural network framework, equipped with
scene context information and multi-modal prediction
information, is introduced to grasp the temporal and
spatial interactions among agents.

2. A VectorNet-based map simplification method is im-
plemented by extracting the primary map structure and
collecting fine-grained data to optimize prediction accu-
racy.

3. A multi-head attention mechanism that integrates vehi-
cle and scene attention layers in parallel is developed to
enhance computational efficiency and real-time predic-
tion capabilities.

The rest of this paper is organized as follows: Sect. 2
discusses the current literature and outlines the approach
adopted in the paper, and the structure of the proposed model
is described in Sect. 3. Section 4 presents simulation results
and a performance comparison of the model. The main con-
clusions and potential avenues for future work are summa-
rized in Sect. 5.

In accordance with the expression and architecture of the
existing work, this section presents the latest progress in
the modeling of scene contexts and multi-modal predictions,
which constitute the key issues in the prediction tasks and
currently active areas of research.

The rasterized map depicts the agent scenario and the road
geometry environment in a most universal and straightfor-
ward manner. CoverNet (Phan-Minh et al., 2020) and Raster-
Net (Djuric et al., 2020) simplify the prediction tasks by ren-
dering different traffic entities and rasterizing high-definition
maps and surroundings into a bird’s-eye-view image. How-
ever, rasterized images tend to be overly complex represen-
tations of the environment. Graph neural networks and graph
convolutional networks (Cui et al., 2020; Wu et al., 2020) are
becoming increasingly essential in processing unstructured
data as a means to circumvent this onerous process. Vector-
Net (Gao et al., 2020) vectorizes map information and partic-
ipant trajectories to construct polyline graphs fed into graph
neural networks for vehicle trajectory prediction, thereby re-
ducing data loss. In the LaneGCN (Li et al., 2020), the com-
plex topology and long-range correlation of the lane map
are captured through multiple adjacency matrices and multi-
scale expansion convolution on the raw map data. Both of
these demonstrate strong capabilities in extracting spatially
local information.

Simple physical models provide a valuable means to corre-
late some control inputs and external conditions with the evo-
lution of the vehicle state (Wang et al., 2019; Xie et al., 2017)
for short-term prediction windows of 1s or less. Behavior
models based on Kalman filtering (Keller and Gavrila, 2013),
hidden Markov models (Neto et al., 2018; Ye et al., 2015),
and their variants (Hubmann et al., 2018) have been em-
ployed for intensive investigation to gain a deeper under-
standing of vehicle motion and behavior.

However, road participants exhibit diverse dynamic behav-
iors, which can be associated with either aggressive or con-
servative driving styles. Consequently, the neural network
models based on data have gained wider acceptance in order
to enhance the accuracy of vehicle movement analysis and to
identify road user behaviors more effectively. In contrast, the
deep neural network model, based on big data and used to
learn the vehicle trajectory data that cover all complexities,
demonstrates enhanced expressiveness and yields superior
results over a long prediction range of a few seconds. There-
after, the subject has been extensively explored and continues
to be under investigation in terms of its methodological as-
pects and concrete applications.

Given the vanishing-gradient issue of the recurrent neu-
ral network (RNN) (Yeon et al., 2019), the long short-term
memory (LSTM) network has been the dominant method
of trajectory prediction. In Deo et al. (2018), the authors
present an LSTM-based prediction model for drivers’ in-
tentions and verify the precision of each trajectory predic-
tion clue to generate the optimal trajectory. However, a mo-
tion model based on intention-guided motion cannot explain
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Proposed trajectory prediction architecture. The inputs of the prediction model on the left are the historical trajectories of sur-
rounding vehicles and the scene context. The output is the distribution of the future trajectories.

drivers’ behaviors because of the interdependencies amongst
vehicles (Mozaffari et al., 2020). Social LSTM is introduced
in Alahi et al. (2016), where participant interactions are con-
nected through a social pooling layer to complete the predic-
tion. Furthermore, in Hou et al. (2019), a structural LSTM
network is proposed, where LSTM models are assigned to
individual vehicles and the model automatically learns the
dependencies among multiple interactive vehicles by sharing
unit states and hidden states. These approaches factor in the
interactions between multiple vehicles and result in a more
accurate risk assessment. Nonetheless, the LSTM also has
certain limitations caused by its time-dependent structure for
the extraction of the sequence and memory mechanism (Dai
et al., 2019). It is challenging to train long-term sequences,
resulting in lower long-term prediction accuracy.

Efforts to resolve this dilemma have resulted in the combi-
nation of various neural networks. The convolutional neural
network (CNN) has attracted attention for its capacity to ex-
tract spatial features. The CNN-LSTM (Mo et al., 2020) ne-
cessitates feeding the historical trajectories of vehicles and
the interaction extracted between adjacent vehicles by em-
ploying the CNN in the LSTM decoder to generate the pre-
dicted future trajectory. To improve the robustness of the so-
cial pool layer, in Deo and Trivedi (2018), the authors exploit
the convolutional social pool layer to learn the spatial corre-
lation of the trajectory. Finally, in Lee et al. (2017), multiple
predicted trajectories are generated on the basis of the RNN
codec, which combines the scene context features extracted
by the CNN for sorting and refining to construct the final tra-
jectory.

Although numerous trajectory prediction methods have
been developed in recent years, challenges persist, includ-
ing computational complexity, reliance on specific environ-
ments or datasets, and a poor knowledge of vehicle interac-
tions. There is a paucity of interactive prediction models in
existing research that can properly account for both the rele-
vant hazards in traffic scenarios and the degree of influence
from adjacent vehicles.

The evolution of trajectory patterns, with their intrinsic laws
and external influencing factors being intertwined, exhibits

a high degree of dynamism and complexity, posing a severe
challenge to accurate prediction. On the one hand, we ob-
serve that certain trajectory features exist independently of
the road framework, and the subtle correlation with road con-
struction is often overlooked. On the other hand, some pre-
diction algorithms solely concentrate on the trajectory dy-
namics of a single subject vehicle. Even when considering
multi-vehicle trajectories to a limited extent, the impact of
other vehicles on the target vehicle is often simplified. There-
fore, it remains a formidable task to guarantee high predic-
tion accuracy in such a complex and dynamic road environ-
ment.

Our task is to employ neural networks as a pivotal tool to
integrate the dual challenges of trajectory prediction, thereby
constructing an interactive model capable of profoundly cap-
turing and deciphering the intricate spatiotemporal interac-
tions among the various entities involved. In the context of
transportation scenarios characterized by multiple vehicles
operating simultaneously and in complex environments, we
are convinced that leveraging multi-faceted input data and
fully integrating the trajectories of multiple vehicles with en-
vironmental information for prediction make us more likely
to achieve more precise predictions of vehicle positions in
the long term.

In recent years, Transformer networks, originally success-
ful in natural language processing (Vaswani et al., 2023),
have also shown promise in vehicle trajectory prediction (Xu
et al., 2021). In Quintanar et al. (2021), the author maintains
the original structure of the Transformer and enhances pre-
diction performance by incorporating the agent’s orientation.
However, this is a single-agent method that ignores context
factors and interactions with other agents. As suggested by Li
et al. (2020), a joint approach for target detection and motion
prediction is built on a Transformer model, which extracts
participants’ states and spatial information from a bird’s-eye
view (BEV) feature map. The computation of shared tasks
ensures optimal memory utilization, but it also raises predic-
tion complexity.

Compared with the above methods, our approach involves
a simplified spatial feature extraction method that cleverly
transforms complex traffic scenes into ordered and semanti-
cally rich vector sequences using VectorNet technology. This
facilitates efficient computation while achieving deep char-



acterization and efficient encoding of scene context infor-
mation. In addition, the VectorNet framework can flexibly
handle different levels of road network data, demonstrating
excellent scalability and providing strong support for large-
scale trajectory prediction tasks.

Additionally, a comparison experiment is constructed to
validate the model’s prediction performance under identi-
cal settings. On outdoor datasets, it outperforms dual-LSTM
models in terms of accuracy and shows closer prediction to
the ground truth, with ADE and FDE being lowered by an
average of 10 % and 11 %, respectively.

In this section, we introduce the traffic scene context encod-
ing method, the model input and output, the encoder—decoder
Transformer structure, and implementation details.

Modeling the scene context information to capture the agent—
road interaction is of paramount importance for trajectory
prediction. VectorNet is adopted for its superior ability in ex-
tracting spatial locality. The core idea of VectorNet is to re-
alize high-precision and low-redundancy expression of scene
context information by abstracting map elements into vector
sequences. The key to this transformation process lies in its
ability to preserve the geometric structure and attribute infor-
mation of the original map data while effectively addressing
the limitations of traditional methods in handling irregular
shapes and topological relationships.

Specifically, most elements in high-definition maps that
pertain to traffic scenes, such as splines, closed-shaped poly-
gons, and points, come with additional attribute information.
All of these geographic entities and their properties can be
approximated as vector sequences. We select a starting point
and direction and then uniformly sample the key points along
the splines with a consistent spatial distance. Vectorization
processing is mainly divided into two layers:

1. Each lane line is represented by several polylines.

2. Each line is a piece of semantic information composed
of multiple vectors.

We extract specific lane line features following vectoriza-
tion steps, embed the sorting information into the vector, and
constrain subgraph connectivity in accordance with the poly-
line grouping; the corresponding expressions are as follows:

v =[d}.df,ai,idp] 1)
Ptz[vtl,vtz,...,vg], 2)
vt=[P{,P;,....P], 3)

where v} represents each vector; dl‘ and df are the start and
end coordinates of the vector; a; represent the feature vector,

which can include feature types such as road features and
lane speed limits; and id,, signifies the index of the polyline
to which the vector belongs. P! is a set of lines representing
lane line features, composed of multiple sets of vectors vl?.
V' is the vectorized result of the one-to-one correspondence
of map labels.

To address the issue of varying lengths of lane lines, we
standardize their lengths by segmenting roads longer than
100 m into shorter segments, thereby mitigating the issue of
large vector length discrepancies that can lead to extraction
errors. Consequently, each polyline contains a maximum of
100 vectors, and for those containing fewer than 100 vectors,
zeros are padded to ensure a consistent data structure and to
facilitate subsequent processing.

In addressing the complex task of vehicle trajectory predic-
tion, we opt for a systematic simplification by reframing it as
a sequence prediction problem. To achieve this, we establish
a multi-agent framework, wherein each agent, representing a
distinct vehicle in the traffic scene, can process its current and
previous positions (observation or motion history) through a
Transformer network to output the predicted future positions.

Assuming that N agents are involved in a given traf-
fic scene, the trajectory of agents is represented as X'=
[th, X5, ... X}V], where X! = (xit, yl‘) indicates the position
of the vehicle from time 1 to fyps in the top-down view
map. Both the past trajectory X' and the map information
V! serve as inputs to the model. The future trajectories based
on ground truth from time fobsy1 tO fyred Can be expressed
as Y'=[Y],Y;..... Yy ], while the output sequence from our

model can be denoted as ¥' = [IA/{, )A’zt, . ?}V]

Transformer has dominated the field of capturing global de-
pendencies between inputs and outputs, especially for long
sequences, with the adoption of the classic encoder—decoder
architecture. The encoder creates a representation of the in-
teractions between map information and vehicles to enhance
the memorability of the model, while the decoder is in charge
of generating the future trajectory positions. Modules such as
the embedding layers, position encoding (PE), self-attention
layers, and fully connected feed-forward layers constitute the
core of this algorithm.

Before entering the encoder, the input sequences are con-
verted to vectors through the embedding layer, and the
position-encoding blocks subsequently obtain positional in-
formation about the order of the input elements with the same
dimension d_model as the embedding. The two components
are then summed to form the final embedding as the input
for the encoder—decoder. The position-encoding calculation
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formula (Vaswani et al., 2023) is expressed by Eqs. (4)—(5):

] pos
PE(pos,Zi) =sm| ———— | “@
10000 9model
pos
PE(pos,2i+l) = COs <—2, ) 4)
10000 9model

where pos denotes the position, and i represents the dimen-
sion. Each position obtains the value combination of sine and
cosine functions, with varying periods in the embedding di-
mension, thereby conveying unique positional information.

The forecasting model relies heavily on two indispens-
able inputs: the historical trajectory data and the contextual
map, both of which serve as vital information sources. Ini-
tially, each encoder’s input undergoes meticulous process-
ing by a self-attention layer, designed to uncover long-term
dependencies within by calculating self-attention across em-
beddings at various time points. As depicted in Fig. 2, these
self-attention layers are intricately bifurcated into two dis-
tinct parts: the agent attention layer and the scene attention
layer.

The agent attention layer specifically captures the intri-
cate interactions between the historical trajectories of indi-
vidual agents, facilitating a deeper understanding of their
movement patterns. In parallel, the scene attention layer en-
codes the map data, intertwining it with the agents’ historical
trajectories. This integration provides crucial environmental
cues that not only enhance prediction accuracy but also pro-
foundly influence the agents’ decision-making processes and
subsequent movements, underscoring its significance in re-
fining our forecasting capabilities.

The self-attention layer maps a set of queries, Q; a set of
keys, K; and a set of values, V, into an output vector. Q, K,
and V represent the query matrix, key matrix, and value ma-
trix, respectively. These matrices, denoted as Q, K, and V,
are derived from the input vector x through three different
weight matrices. The attention matrix can be obtained by the
dot product of the query and the key vector by 1/+/d). When
the dj value is large, a scaling operation is performed to pre-
vent convergence issues. The result is then passed through
the softmax function, represented by the formula of Eq. (6):

QK’

Vi

The multi-head attention mechanism is used to establish mul-
tiple subspaces, allowing the model to focus on various as-
pects of information and to obtain subspace information from
different locations through multiple calculations. First, after
linear transformation, Q, K, and V are executed in parallel
h times in relation to the scaled dot product attention mecha-
nism, which is called the multi-head /. Then, the results of 2
times in relation to the scaled dot product attention are con-
nected and transformed into the expected dimension through
linear transformation to obtain the final value of the multi-
head attention, corresponding to the following formulas in

Egs. (7)-(8):
multi-head (Q, K, V) = concat (heady, ...,

attention (Q, K, V) = softmax V. (6)

headn) WO, (7)
head; = attention (QWZQKWZKVW,V) , (®)

where WQ WK WV, and WO represent the query, key,
value, and output weight matrices.

The distinction between the scene attention layer and the
agent attention layer stems from their respective input vec-
tors. Specifically, the agent attention layer incorporates vehi-
cle position embeddings for Q;, K;, and V|, whereas the
scene attention layer utilizes vehicle position embeddings
for Q> and integrates scene information embeddings for K,
and V5. In the intricate web of multi-vehicle interactions,
each vehicle’s paramount objective is to distill decisive fea-
ture signatures from the ambient environment and the myr-
iad of participants. This intricate feature extraction process
can be meticulously segmented into four phases: gathering
distinctive features, precisely delineating feature sets, effi-
ciently querying identifiers, and consolidating results. Each
attention head leverages input linear projections to generate
diverse feature selections, ultimately constructing V. To pin-
point these salient features, K is associated with each value
V, fostering a profound comprehension and enabling precise
responses to complex traffic scenarios.

The structure of the decoder bears a resemblance to that
of the encoder. This encoder—decoder attention works simi-
larly to the multi-head attention, except for the fact that the
former creates a query Q through the layer beneath it and ob-
tains the key K and value V from the output of the encoder.



The masked attention layer performs a mask operation in re-
sponse to attention from subsequent positions.

Another sublayer of the encoder and decoder is a fully con-
nected feed-forward network, allowing for nonlinear trans-
formations. This includes two layers of linear transforma-
tions with a rectified linear unit (ReLU) activation in be-
tween. Each sub-module of the main framework is accom-
panied by a residual connection and normalization layer,
which effectively ameliorates the issue of gradient vanish-
ing in deep models and accelerates convergence. Finally, the
predicted results are outputted through linear transformation
and the softmax function.

In this study, the Transformer network consists of eight at-
tention heads, six layers, and dppge] = 512. The layer normal-
ization sets eps = 1x 107 for the output value of multi-head
attention. To mitigate over-fitting during the training process,
a dropout rate of 0.2 is set for the residual network. Consider-
ing the fact that trajectory prediction constitutes a regression
problem, the loss function is defined by the L2 loss between
the predicted output trajectory and the ground truth trajec-
tory. Backpropagation training of the network is conducted
using the Adam optimizer, with a learning rate set to 0.0001
and a batch size set to 128. The network training and evalua-
tion are facilitated using PyTorch.

In this section, our approach is evaluated based on the pub-
licly available Argoverse dataset, a large-scale autonomous
driving dataset containing 320h of data and rich map in-
formation (Chang et al., 2019). The recorded vehicles are
mainly distributed across complex traffic made up of inter-
sections, turns, and lane changes, with a total of 324557
5s sequences. For trajectory length, we set fops =2 and
fpred =38, with a time interval of 0.1s. The training, test,
and validation sets contain 205942, 78 143, and 39472 se-
quences, respectively. Quintessentially, the “agent” in each
sequence is a vehicle, but other tracked objects can be ve-
hicles, pedestrians, or bicycles. Figure 3 illustrates sampling
locations and the distribution of these sequences.

In terms of the multi-modal prediction based on Argoverse,
four separate metrics are introduced for evaluation. The com-
mon metrics in the literature are as follows:

Final displacement error (FDE). This metric measures
the distance between the final predicted position and the
corresponding ground truth position at that specific time
point without a consideration of the prediction errors
that occur in other time steps in the prediction horizon.

Average displacement error (ADE). ADE measures the
average discrepancy between the predicted position at
each time step and the ground truth position for that par-
ticular step.

MADE and MFDE. These metrics refer to the minimum
ADE and FDE among multiple predictions.

ADE and FDE measurements are standard assessment
metrics in trajectory prediction. They clearly measure the
distance error between predicted and ground truth locations;
the following observations are made based on these metrics:

1. These indicators are comparatively intuitive and enable
us to directly quantify the performance of the prediction
algorithm by measuring ADE at a particular time inter-
val and FDE at a defined time; therefore, they are com-
monly used to evaluate the performance of prior tech-
niques.

2. Standard ADE and FDE metrics are applicable to any
interaction scenario and do not take into consideration
any form of prediction confidence, such as the possibil-
ity or rank of each trajectory.

For multi-modal evaluation, we also introduce MADE and
MFDE to evaluate the single best prediction. A series of ex-
periments are conducted to compare our model with a wide
range of baselines, which include the following:

TNT (Zhao et al., 2020). This model encodes the map
context to capture the agent—road and agent—agent in-
teractions while using multi-layer perception (MLP) to
predict the future trajectory of the agent.

LaneRCNN (Zeng et al., 2021). LaneRCNN proposes
LaneRol, which models participant interactions with a
graph-based interactor and predicts the final position in
a fully convolutional manner.

Trajformer (Bhat et al., 2020). Trajformer unifies the
Transformer encoder structure with the normalized
flow-based decoder structure for multi-modal trajectory
prediction.

Dual-LSTM models (Xin et al., 2018). This approach
employs two LSTM networks — one for intent identifi-
cation of the sequential trajectory and another for future
trajectory prediction.

On the basis of this dataset, a comparison is made between
our proposed approach and those presented in the previous
section. The MADE and MFDE values of these models are
presented in Table 1. The findings indicate that dual-LSTM
models exhibit undisputed superiority in terms of lateral po-
sition error. On the other hand, the Trajformer model, with its
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Comparison with baselines based on the Argoverse. The
bold values represent the results corresponding to the model pro-
posed in this paper.

Baselines MADE (m) MFDE (m)
TNT 0.73 1.29
LaneRCNN 0.77 1.19
Trajformer 0.62 0.71
Dual-LSTM models 0.58 0.74
Our approach 0.58 0.62

unique Transformer encoding architecture, has also demon-
strated considerable predictive performance, which is firmly
in the forefront. However, it is worth mentioning that the in-
teractive prediction model based on Transformer architecture
proposed in this paper not only reduces MADE and MFDE
by 12 % and 31 % on average but also reveals a profound in-
sight: the consideration of surrounding vehicle and environ-
mental scene information is indispensable when predicting
vehicle trajectories, and the excellent ability of the Trans-
former model based on the multi-head attention mechanism
to simulate complex motion interactions between vehicles
provides a crucial reference for accurate prediction.

We employ the dual-LSTM model as a benchmark in one
experiment. Apart from the internal model structure, all as-
pects related to the two models remain identical, such as in-
puts, outputs, the number of layers, and the training process.
No human intervention occurs during the training process.
The loss function values are plotted in Fig. 4. It can be ob-
served that, when the loss starts to converge after about 150
iterations, the improved Transformer model has a smoother
training process and can converge the loss value to a satis-
factory low value. This phenomenon strongly confirms the
superiority of the model in terms of training difficulty and

0.9

— Transformer train loss —— Dual LSTMs train loss
0.891 — Transformer val loss Dual LSTMs val loss
0.7 1

100 200 300 400 500
Training iterations

The loss variation of the two models.

convergence speed. In Fig. 5, most trajectories exhibit a fi-
nal displacement error of less than 1 m within 3 s. Notably,
the Transformer model achieves an even smaller error value.
These visualized data not only provide solid evidence for
our theoretical inference but also vividly demonstrate the ex-
traordinary strength of the model in terms of prediction ac-
curacy.

Our approach can model the internal relationships between
different inputs, and the specific comparison results are listed
in Tables 2 and 3. Since driving actions are largely influenced
by real-time changes in traffic circumstances, map infor-
mation provides fundamental route structures and semantic
guidance conducive to long-term prediction. Vectorizing the
semantic road map into context information as input into the
Transformer (map + agents) yields superior outcomes. Our
model’s trajectory prediction accuracy is superior to that of
dual-LSTM models, with more precise error control in end-
point displacement prediction; furthermore, ADE and FDE
are reduced by 10 % and 11 %, respectively. From these re-



Average displacement error. The bold values represent the results corresponding to the model proposed in this paper.

Method Lateral position error (m) ‘ Longitudinal position error (m) ‘ Average displacement error (m)
Prediction horizon 0-1s 0-2s 0-3s | 0-1s 0-2s 0-3s | 0-1s  0-2s 0-3s
Transformer agents 058 0.73 1.03 0.53 1.03 1.49 079 127 182
Dual-LSTM map + agents 046 051 055 047 052 057 0.66 0.73 0.79

Our approach’s map + agents 0.42 0.44 049 043 046 0.51 0.60 0.64 0.71

Final displacement error. The bold values represent the results corresponding to the model proposed in this paper.
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sults, it is clear that the superiority of the model lies in the
introduction of an improved agent attention layer and an im-
proved scene attention layer, which enables the model to cap-
ture and understand complex traffic scene information and
the intricate and subtle interactions between vehicles more
deeply and comprehensively, ensuring the adaptability and
prediction accuracy of the model in relation to various com-
plex situations.

On the other hand, the average lateral and longitudinal
displacement errors remain consistently low, with values of
0.6 m during the 3's prediction period, indicating the excel-
lent accuracy and reliability of the prediction model. As the
prediction time increases and the estimated horizon extends,
future vehicle behavior tends to be more uncertain, with an
increase in both lateral and longitudinal final position errors.
However, within a relatively short prediction period, this de-
viation still fluctuates within an acceptable error threshold.
Further analysis reveals that the key to improving long-term
prediction accuracy may lie in enriching input features and

incorporating interactive effects between vehicles. These el-
ements enable the model to capture the subtle changes in in-
dividual vehicle behaviors in complex road conditions more
finely.

It is arduous to precisely evaluate the model’s effectiveness
solely based on average displacement error analysis because
of the concealment potential of lane change behavior pre-
dictions. As a consequence, qualitative results are composed
of the trajectory visualization of the dual-LSTM models and
the improved Transformer model, which better expresses the
model performance in a more intuitive way. Figure 6 depicts
the error distribution of trajectory prediction in various traf-
fic scenarios, covering typical driving modes such as straight,
left turn, and right turn. When the vehicle is driving straight,
the improved Transformer model shows prediction accuracy
that is almost identical to the ground truth trajectory. Faced
with lane-changing actions such as left and right turns, al-
though the final position error predicted by the model has
increased, it still demonstrates its excellent predictive ability,
clearly surpassing the dual-LSTM model.

The Transformer model significantly outperforms the
dual-LSTM models in sharp bends, as shown by the visu-
alized findings. It indirectly indicates that our approach has
exhibited favorable performance in terms of the extraction
of the temporal and spatial characteristics of long-term se-
quences and in providing more accurate predictions for a
given observation trajectory aided by maps and road rules.

This section endeavors to delve deeper into analyzing the in-
fluence of diverse parameters on the prediction accuracy of
the Transformer model subsequent to reporting and contrast-
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Trajectory visualization. List of the trajectory prediction results of the dual-LSTM models and Transformer model in three common

traffic situations for comparison.

ing the existing methodologies. As is evident from Table 4,
the utilization of varying attention heads subtly modulates
the prediction performance, where the model equipped with
eight attention heads demonstrates a marginal reduction in
prediction error. Each attention head encapsulates a unique
set of weights, primarily influencing the interactions between
the ego vehicle and its surroundings.

Furthermore, our investigation into the impact of encoder
and decoder layers on model efficacy revealed that, from a
qualitative and quantitative standpoint, there exists no note-
worthy disparity between the 6-layer and 12-layer architec-
tures. However, a notable divergence emerges when assess-
ing the time efficiency for single-sample prediction. More
precisely, the adoption of a 12-layer encoder—decoder con-
figuration significantly escalates the computational costs,
thereby posing a formidable challenge for real-time predic-
tion applications where promptness is paramount.

After weighing the relationship between computational
complexity and prediction error, we have decided to adopt
an eight-head attention configuration with a six-layer en-
coder and decoder in our experiments. This parameter not
only maximizes model prediction accuracy but also fully

considers the need for computational efficiency, striving to
achieve rapid and accurate prediction of vehicles in complex
traffic environments while ensuring real-time operation of
the model and avoiding adverse effects on driving decisions
caused by calculation delays.

In this paper, an end-to-end trajectory prediction model based
on Transformer has been proposed to address long-term pre-
diction accuracy in complex traffic environments. Multi-head
attention optimization based on scene context and vehicle po-
sition knowledge generates interactions between maps and
agents, as well as among agents themselves. The effective-
ness of the proposed algorithm has been evaluated on the ba-
sis of an outdoor dataset to achieve higher precision and a
closer distance to the real destination. Accordingly, the pro-
posed approach demonstrates the capacity to handle complex
traffic scenarios for different road users. In future work, to
validate the broad applicability of our algorithm, we plan to
conduct cross-dataset evaluations and research in the field of
pedestrian trajectory prediction. Specifically, we will apply



Ablation studies on different parameters of the improved Transformer. The bold values represent the results corresponding to the

model proposed in this paper.

Parameters Average displacement error (m) ‘ Final displacement error (m) MADE MFDE  Prediction time
Prediction horizon 0-1s 0-2s 0-3s ‘ Is 2s 3s (m) (m) (s)
h=2,layers=6 0.62 0.69 0.79 0.65 0.84 1.18 0.58 0.65 0.159

h =4, layers =6 0.65 0.77 093 0.71 1.03 145 0.60 0.71 0.165
h=38, layers=6 0.60 0.64 0.71 0.62 0.73 0.95 0.58 0.62 0.152
h=38,layers=12 0.62 0.65 0.71 0.63 0.73 091 0.60 0.63 0.372

our algorithm to additional datasets such as nuScenes and
KITTI, which are renowned for their rich scene diversity,
high-quality annotations, and widespread industry recogni-
tion. By testing our algorithm on these diverse datasets, we
aim to demonstrate its generalization capabilities and ro-
bustness under various environments and conditions, thereby
proving its potential and value in practical applications.

The data and code that support the
findings of this study are available upon request from the first au-
thor.
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