Articles | Volume 12, issue 1
https://doi.org/10.5194/ms-12-31-2021
https://doi.org/10.5194/ms-12-31-2021
Research article
 | 
27 Jan 2021
Research article |  | 27 Jan 2021

Analysis of influence factors of rail corrugation in small radius curve track

Zhiqiang Wang and Zhenyu Lei

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Numerical Modeling and Analysis
Position control of a soft pneumatic actuator based on the pressure parameter feedback model (PPFM)
Yuwang Liu, Dongyang Zhang, Yi Yu, Peng Chen, Wenping Shi, and Dongqi Wang
Mech. Sci., 15, 407–416, https://doi.org/10.5194/ms-15-407-2024,https://doi.org/10.5194/ms-15-407-2024, 2024
Short summary
Structural design and jumping motion planning of the jumping leg inspired by a goat's hindlimb
Gang Chen, Longxin He, Zhihan Zhao, Yuwang Lu, Jiajun Tu, Xiangying Ren, and Hanzhi Lv
Mech. Sci., 14, 493–502, https://doi.org/10.5194/ms-14-493-2023,https://doi.org/10.5194/ms-14-493-2023, 2023
Short summary
Design and experiment of magnetic navigation control system based on fuzzy PID strategy
Guosheng Geng, Feng Jiang, Chao Chai, Jianming Wu, Yejun Zhu, Guiguan Zhou, and Maohua Xiao
Mech. Sci., 13, 921–931, https://doi.org/10.5194/ms-13-921-2022,https://doi.org/10.5194/ms-13-921-2022, 2022
Short summary
Adaptive sliding-mode control for improved vibration mitigation in civil engineering structures
Khaled Zizouni, Abdelkrim Saidi, Leyla Fali, Ismail Khalil Bousserhane, and Mohamed Djermane
Mech. Sci., 13, 899–908, https://doi.org/10.5194/ms-13-899-2022,https://doi.org/10.5194/ms-13-899-2022, 2022
Short summary
Autonomous vehicle trajectory tracking lateral control based on the terminal sliding mode control with radial basis function neural network and fuzzy logic algorithm
Binyu Wang, Yulong Lei, Yao Fu, and Xiaohu Geng
Mech. Sci., 13, 713–724, https://doi.org/10.5194/ms-13-713-2022,https://doi.org/10.5194/ms-13-713-2022, 2022
Short summary

Cited articles

Chen, G. X., Zhou, Z. R., Ouyang, H., Jin, X. S., Zhu, M. H., and Liu, Q. Y.: A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset–track system, J. Sound Vib., 329, 4643–4655, https://doi.org/10.1016/j.jsv.2010.05.011, 2010. 
Chen, G. X., Zhang, S., Wu, B. W., Zhao, X. N., Wen, Z. F., Ouyang, H., and Zhu, M. H.: Field measurement and model prediction of rail corrugation, P. I. Mech. Eng. F-J. Rai., 234, 381–392, https://doi.org/10.1177/0954409719877318, 2020. 
Cui, X. L., Chen, G. X., Yang, H. G., Zhang, Q., Ouyang, H., and Zhu, M. H.: Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners, Vehicle Syst. Dyn., 54, 353–369, https://doi.org/10.1080/00423114.2015.1137955, 2016. 
Cui, X. L., Chen, G. X., and Yang, H. G.: Influence of wheelset structure and fastener stiffness on rail corrugation, Journal of Southwest Jiaotong University, 52, 112–117, https://doi.org/10.3969/j.issn.0258-2724.2017.01.016, 2017. 
Cui, X. L., Yan, S., and Chen, G. X.: Field measurement and numerical simulation for rail corrugation in sector of fixed dual short sleeper, Journal of Vibration and Shock, 37, 171–176, https://doi.org/10.13465/j.cnki.jvs.2018.13.027, 2018. 
Download
Short summary
This study carries out the complex eigenvalue analysis of influence factors of rail corrugation by using the three-dimensional finite-element model of a wheel–rail system based on the theory of friction self-excited vibration. The results show that improving the vertical and lateral stiffnesses of fasteners, controlling the wheel–rail friction coefficient below 0.4, and maintaining balanced superelevation can effectively reduce the occurrence possibility of rail corrugation.