Articles | Volume 12, issue 1
https://doi.org/10.5194/ms-12-603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ms-12-603-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and analysis of an innovative flapping wing micro aerial vehicle with a figure eight wingtip trajectory
Shan Jiang
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Yong Hu
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Qiang Li
CORRESPONDING AUTHOR
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Long Ma
Aviation Operations Service College, Aviation University of Air Force, Changchun, Jilin 130022, China
Yang Wang
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Xiaoqin Zhou
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Qiang Liu
CORRESPONDING AUTHOR
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130022, China
Related authors
Qiang Liu, Qiang Li, Xiaoqin Zhou, Pengzi Xu, Luquan Ren, and Shengli Pan
Mech. Sci., 10, 355–362, https://doi.org/10.5194/ms-10-355-2019, https://doi.org/10.5194/ms-10-355-2019, 2019
Qiang Liu, Qiang Li, Xiaoqin Zhou, Pengzi Xu, Luquan Ren, and Shengli Pan
Mech. Sci., 10, 355–362, https://doi.org/10.5194/ms-10-355-2019, https://doi.org/10.5194/ms-10-355-2019, 2019
Related subject area
Subject: Mechanisms and Robotics | Techniques and Approaches: Experiment and Best Practice
Design and performance analysis of the 4UPS-RRR parallel ankle rehabilitation mechanism
Visual simultaneous localization and mapping (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes
Assistance control strategy for upper-limb rehabilitation robot based on motion trend
Experimental study on fingertip friction perception characteristics on ridged surfaces
Wearable ankle assistance robot for a human walking with different loads
A vision-based robotic system following the human upper-limb sewing action
Gait analysis algorithm for lower limb rehabilitation robot applications
Obstacle-avoidance path planning based on the improved artificial potential field for a 5 degrees of freedom bending robot
Development of a force-field-based control strategy for an upper-limb rehabilitation robot
Assessment of force control for surface finishing – an experimental comparison between Universal Robots UR10e and FerRobotics active contact flange
Characteristics of the Received Signal of an Ultrasonic Sensor Installed in a Chamber with Micro-Leakage
Crushing mechanism of a mobile pellet harvester
Development of a novel flapping wing micro aerial vehicle with elliptical wingtip trajectory
Design of a robot-assisted exoskeleton for passive wrist and forearm rehabilitation
Design and hardware selection for a bicycle simulator
Design and evaluation of a continuum robot with extendable balloons
A novel 5-DOF high-precision compliant parallel mechanism for large-aperture grating tiling
Development of a lower extremity wearable exoskeleton with double compact elastic module: preliminary experiments
Influence of gear loss factor on the power loss prediction
Experimental tests on operation performance of a LARM leg mechanism with 3-DOF parallel architecture
Fatigue testing of flexure hinges for the purpose of the development of a high-precision micro manipulator
An articulated handle to improve the ergonomic performance of robotic dextrous instruments for laparoscopic surgery
Devices for accurate placement of epidural Tuohy needle for Anaesthesia administration
Power-free bistable threshold accelerometer made from a carbon nanotube framework
Origami-like creases in sheet materials for compliant mechanism design
Review article: locomotion systems for ground mobile robots in unstructured environments
Kan Shi, Zongjia Wang, Changtao Yan, and Zhiwei Wang
Mech. Sci., 15, 417–430, https://doi.org/10.5194/ms-15-417-2024, https://doi.org/10.5194/ms-15-417-2024, 2024
Short summary
Short summary
In order to lessen the impact on the team of rehabilitation practitioners and provide patients with a higher-quality rehabilitation process, an ankle rehabilitation robot based on a parallel mechanism is proposed. The feasibility of the ankle rehabilitation robot proposed in this paper is proven by analysis, which lays a foundation for future human–machine experiments. It can act as a reference for future research of the ankle rehabilitation mechanism.
Mengyuan Chen, Hangrong Guo, Runbang Qian, Guangqiang Gong, and Hao Cheng
Mech. Sci., 15, 1–16, https://doi.org/10.5194/ms-15-1-2024, https://doi.org/10.5194/ms-15-1-2024, 2024
Short summary
Short summary
The proposed VTD-SLAM algorithm has the following advantages. (1) A multiclass feature enhancement and multiclass feature guidance semantic segmentation network (MSNET) is proposed to improve the semantic segmentation ability of dynamic objects. (2) Optimal neighbor pixel matching is used to complete the image of the deleted region. Our method can effectively solve the influence of dynamic objects, so that the SLAM system can operate effectively.
Haojun Zhang, Tao Song, and Leigang Zhang
Mech. Sci., 14, 503–518, https://doi.org/10.5194/ms-14-503-2023, https://doi.org/10.5194/ms-14-503-2023, 2023
Short summary
Short summary
To enable the control system to provide minimal assistance and apply different rehabilitation stages according to the subject's performance, this paper proposes a motion-trend-based assistance control strategy. The preliminary experimental results demonstrate that the proposed control strategy works well to quickly adjust the assistance to the subject's motor performance and quickly reduce the assistance when the subject tends to actively participate in the exercise.
Liyong Wang, Li Yang, Le Li, Jianpeng Wu, and Qian Zou
Mech. Sci., 14, 463–477, https://doi.org/10.5194/ms-14-463-2023, https://doi.org/10.5194/ms-14-463-2023, 2023
Short summary
Short summary
The development of bionic skin has always been a challenging scientific research problem. A novel experimental method is proposed for investigating fingertip friction perception characteristics. The results show that the tactile perception accuracy can be improved by changing the surface texture and lubrication conditions. The method can provide peer experience for revealing tactile perception mechanisms and can also provide theoretical guidance for the research of bionic skin.
Junqiang Li, Kuan Yang, and Dong Yang
Mech. Sci., 14, 429–438, https://doi.org/10.5194/ms-14-429-2023, https://doi.org/10.5194/ms-14-429-2023, 2023
Short summary
Short summary
A wearable ankle assisted robot is developed to meet the demand for ankle assistance during human walking. The active energy storage mechanism in the robot can realize the storage and release of energy and realize the application of a low-power motor to provide large assisted force. The experimental results show that the net metabolic cost of the participants is reduced by averages of 5.30 %, 5.67 %, and 4.84 % with 0, 4, and 8 kg loads respectively.
Liming Zhang, Xiaohua Wang, Haoyi Wang, and Pengfei Li
Mech. Sci., 14, 347–359, https://doi.org/10.5194/ms-14-347-2023, https://doi.org/10.5194/ms-14-347-2023, 2023
Short summary
Short summary
This paper proposes a robot following method to follow the sewing action of human upper limbs. The purpose of this paper is to demonstrate that robots can assist workers in the future. Compared with the visual servo method, the accuracy is much improved.
Li Zheng and Tao Song
Mech. Sci., 14, 315–331, https://doi.org/10.5194/ms-14-315-2023, https://doi.org/10.5194/ms-14-315-2023, 2023
Short summary
Short summary
In this paper, a gait analysis algorithm for a lower limb rehabilitation robot is proposed. The algorithm realizes the division of gait temporal information and the design of a gait spatiotemporal parameter algorithm based on lidar. A spatial parameter-splicing algorithm based on a time series is proposed, which effectively reduces the influence of errors on gait parameters. Based on the gait algorithm, aiming at real-time algorithm performance, a dynamic window method is proposed.
Quansheng Jiang, Kai Cai, and Fengyu Xu
Mech. Sci., 14, 87–97, https://doi.org/10.5194/ms-14-87-2023, https://doi.org/10.5194/ms-14-87-2023, 2023
Short summary
Short summary
Traditional path-planning algorithms for bending robots are often a sequence of multiple line segments and an unsmoothed curve, which causes a discontinuous robot motion. A smooth path can ensure continuous motion. We propose an improved artificial potential field-based path-planning method based on the idea of a rapidly exploring random tree (RRT) algorithm, reducing the length of and smoothing the path, thus solving the path-planning problem of a multi-degrees-of-freedom (DOF) bending robot.
Jiasheng Pan, Leigang Zhang, and Qing Sun
Mech. Sci., 13, 949–959, https://doi.org/10.5194/ms-13-949-2022, https://doi.org/10.5194/ms-13-949-2022, 2022
Short summary
Short summary
Robot-assisted rehabilitation has proven to be effective for improving the motor performance of patients with neuromuscular injuries. Therefore, the main purpose of this paper is to present a new patient-cooperative control framework for an end-effector upper-limb rehabilitation robot that provides robot-assisted training for individuals with neuromuscular disorders. The feasibility of the proposed control scheme is validated via training experiments using five healthy subjects.
Stefan Gadringer, Hubert Gattringer, and Andreas Mueller
Mech. Sci., 13, 361–370, https://doi.org/10.5194/ms-13-361-2022, https://doi.org/10.5194/ms-13-361-2022, 2022
Short summary
Short summary
We introduce different test scenarios and set-ups for a force control assessment. The force control of Universal Robots (UR10e) and FerRobotics (ACF-K 109/04) are evaluated. A force/torque sensor, mounted below a work piece, measures the applied force by the UR or by the ACF. Results for both UR and ACF force control are presented for varying desired contact velocities and forces. These results show the advantage of the ACF-K 109/04 over the UR10e force control for highly dynamic scenarios.
Wonjun Seo, Seokyeon Im, and Geesoo Lee
Mech. Sci., 12, 1051–1060, https://doi.org/10.5194/ms-12-1051-2021, https://doi.org/10.5194/ms-12-1051-2021, 2021
Short summary
Short summary
This study is focused on analyzing signal changes according to internal flow and temperature change by generating micro-leakage, unlike previous studies that experimented with no flow inside a chamber. In addition, a new application method utilizing a phase shift by post-processing the ultrasonic reception signal was proposed. By using the ultrasonic sensor, a different method was proposed for the measurement of micro-leakage of gaseous fuel that relied on the existing pressure sensor.
Yanyan Ge, Zichao Su, Maohua Xiao, Min Kang, Ruyi Wang, and Qin Zeng
Mech. Sci., 12, 725–733, https://doi.org/10.5194/ms-12-725-2021, https://doi.org/10.5194/ms-12-725-2021, 2021
Short summary
Short summary
This study proposed and verified a new idea for the crushing system of a mobile pellet harvester. As the key components of the crushing mechanism, the theoretical design calculation was given, and Ansys software was used to verify the feasibility of the design, specifically by computing the strength and stiffness. Field tests were conducted, and the test results met the requirements. This design can promote the further development of a mobile pellet harvester.
Qiang Liu, Qiang Li, Xiaoqin Zhou, Pengzi Xu, Luquan Ren, and Shengli Pan
Mech. Sci., 10, 355–362, https://doi.org/10.5194/ms-10-355-2019, https://doi.org/10.5194/ms-10-355-2019, 2019
Mehmet Erkan Kütük, Lale Canan Dülger, and Memik Taylan Daş
Mech. Sci., 10, 107–118, https://doi.org/10.5194/ms-10-107-2019, https://doi.org/10.5194/ms-10-107-2019, 2019
Short summary
Short summary
This paper presents a new exoskeleton design for wrist and forearm rehabilitation. The contribution of this study is to offer a methodology which shows how to adapt a serial manipulator that reduces the number of actuators used in exoskeleton design for the rehabilitation. The system offered is a combination of end-effector- and exoskeleton-based devices. The passive exoskeleton is attached to the end effector of the manipulator, which provides motion for the purpose of rehabilitation process.
Georgios Dialynas, Riender Happee, and Arend L. Schwab
Mech. Sci., 10, 1–10, https://doi.org/10.5194/ms-10-1-2019, https://doi.org/10.5194/ms-10-1-2019, 2019
Short summary
Short summary
With the resurgence in bicycle ridership in the last decade, a better understanding of bicycle rider
behavior is important in accommodating increasing bicycle traffic as well as reducing accidents that come along with it. At TU Delft we have designed a fixed-base bicycle simulator to understand how bicycle rider's interact with other road users in a safe virtual environment.
Efe Yamac Yarbasi and Evren Samur
Mech. Sci., 9, 51–60, https://doi.org/10.5194/ms-9-51-2018, https://doi.org/10.5194/ms-9-51-2018, 2018
Short summary
Short summary
This article presents a novel continuum robot actuated by two extendable balloons. As inflated, the balloons apply a force on the wall of the tip, pushing the robot forward. The contribution of this study is the introduction of a novel actuation mechanism for soft robots to have extreme elongation (2000 %) in order to be navigated in substantially long and narrow environments.
Zhongxi Shao, Shilei Wu, Jinguo Wu, and Hongya Fu
Mech. Sci., 8, 349–358, https://doi.org/10.5194/ms-8-349-2017, https://doi.org/10.5194/ms-8-349-2017, 2017
Yi Long, Zhi-jiang Du, Chao-feng Chen, Wei-dong Wang, and Wei Dong
Mech. Sci., 8, 249–258, https://doi.org/10.5194/ms-8-249-2017, https://doi.org/10.5194/ms-8-249-2017, 2017
Short summary
Short summary
Compared to the traditional pHRI measurement approaches, the proposed method arranged the sensors in the mechanical joint instead of the connection cuff. This kind of architecture has compact architecture and improves the wearing comfort, which can adapt to various operators and is convenient to be applied in the wearable exoskeleton. The performance of the DEM will be studied in the following work and human-exoskeleton coordination control strategies will be investigated in future work.
C. M. C. G. Fernandes, P. M. T. Marques, R. C. Martins, and J. H. O. Seabra
Mech. Sci., 6, 81–88, https://doi.org/10.5194/ms-6-81-2015, https://doi.org/10.5194/ms-6-81-2015, 2015
Short summary
Short summary
The importance of the gear loss factor in the power loss predictions was put in evidence comparing the predictions with experimental results.
It was concluded that the gear loss factor is a decisive factor to accurately predict the power loss.
Different formulations proposed in the literature were compared and it was shown that only few were able to yield satisfactory correlations with experimental results.
M. F. Wang, M. Ceccarelli, and G. Carbone
Mech. Sci., 6, 1–8, https://doi.org/10.5194/ms-6-1-2015, https://doi.org/10.5194/ms-6-1-2015, 2015
Short summary
Short summary
In this paper, 1) We design and built a prototype of a LARM tripod leg mechanism with low-cost easy-operation features that can be useful in a biped locomotor; 2) We present an experimental layout for investigating operational performance of the built prototype; 3) We characterize and analyze the system behaviour by follow a prescribed step movement of the foot platform under consideration with human walking.
I. Ivanov and B. Corves
Mech. Sci., 5, 59–66, https://doi.org/10.5194/ms-5-59-2014, https://doi.org/10.5194/ms-5-59-2014, 2014
B. Herman, A. Devreker, F. Richer, A. Hassan Zahraee, and J. Szewczyk
Mech. Sci., 5, 21–28, https://doi.org/10.5194/ms-5-21-2014, https://doi.org/10.5194/ms-5-21-2014, 2014
N. Vaughan, V. N. Dubey, M. Y. K. Wee, and R. Isaacs
Mech. Sci., 5, 1–6, https://doi.org/10.5194/ms-5-1-2014, https://doi.org/10.5194/ms-5-1-2014, 2014
J. D. Tanner and B. D. Jensen
Mech. Sci., 4, 397–405, https://doi.org/10.5194/ms-4-397-2013, https://doi.org/10.5194/ms-4-397-2013, 2013
K. C. Francis, J. E. Blanch, S. P. Magleby, and L. L. Howell
Mech. Sci., 4, 371–380, https://doi.org/10.5194/ms-4-371-2013, https://doi.org/10.5194/ms-4-371-2013, 2013
L. Bruzzone and G. Quaglia
Mech. Sci., 3, 49–62, https://doi.org/10.5194/ms-3-49-2012, https://doi.org/10.5194/ms-3-49-2012, 2012
Cited articles
Banala, S. K. and Agrawal, S. K.: Design and optimization of a mechanism for
out-of-plane insect winglike motion with twist, J. Mech. Design, 127,
841–844, https://doi.org/10.1115/1.1924474, 2005.
Bolsman, C. T.: Flapping wing actuation using resonant compliant mechanisms, An insect-inspired design, TU Delft, Delft University of Technology, Delft, 2010.
Conn, A., Burgess, S., and Hyde, R.: From natural flyers to the mechanical
realization of a flapping wing micro aerial vehicle, in: 2006 IEEE
international conference on robotics and biomimetics, IEEE, 17–20 December 2006, Kunming, China, 439–444, 2006.
Dickinson, M. H., Lehmann, F. O., and Sane, S. P.: Wing rotation and the
aerodynamic basis of insect flight, Science, 284, 1954, https://doi.org/10.1126/science.284.5422.1954, 1999.
Fenelon, M. A. A. and Furukawa, T.: Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator, Mech. Mach. Theory, 45, 137–146, 2010.
Hassanalian, M., Throneberry, G., and Abdelkefi, A.: Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes, Aerosp. Sci. Technol., 68, 518–529, 2017.
Keennon, M. T. and Grasmeyer, J. M.: Development of the Black Widow and
Microbat MAVs and a Vision of the Future of MAV Design, in: AIAA/ICAS
International Air and Space Symposium and Exposition: The Next, 100, 14–17,
2003.
Liu, Q., Li, Q., Zhou, X., Xu, P., Ren, L., and Pan, S.: Development of a
novel flapping wing micro aerial vehicle with elliptical wingtip trajectory,
Mech. Sci., 10, 355–362, https://doi.org/10.5194/ms-10-355-2019, 2019.
Lobontiu, N. and Garcia, E.: Analytical model of displacement amplification
and stiffness optimization for a class of flexure-based compliant mechanisms,
Comput. Struct., 81, 2797–2810, https://doi.org/10.1016/j.compstruc.2003.07.003, 2003.
McIntosh, S. H., Agrawal, S, K., and Khan, Z.: Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle, IEEE-ASME T. Mech., 11, 145–153, https://doi.org/10.1109/TMECH.2006.871089, 2006.
Meng, X. and Sun, M.: Wing kinematics, aerodynamic forces and vortex-wake structures in fruit-flies in forward flight, J. Bionic Eng., 13, 478–490, 2016.
Nguyen, Q. V., Park, H., and Byun, D.: Recent progress in developing a
beetle-mimicking flapping-wing system, in: World Automation Congress (WAC), IEEE 2010, 19–23 September 2010, Kobe, Japan, 1–6, 2010.
Pelletier, A. and Mueller, T. J.: Low Reynolds number aerodynamics of low-aspect-ratio, Thin/flat/cambered-plate wings, J. Aircraft, 37, 825–832, 2000.
Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., and
Wood, R. J.: First controlled vertical flight of a biologically inspired
microrobot, Bioinspir. Biomim., 6, 036009, https://doi.org/10.1088/1748-3182/6/3/036009, 2011.
Peters, H. J., Goosen, J. F. L., and Van, K. F.: Methods to actively modify the dynamic response of cm-scale FWMAV designs, Smart Mater. Struct., 25, 055027, https://doi.org/10.1007/s00542-015-2762-6, 2016.
Pornsin-Sirirak, T. N., Tai, Y. C., Ho, C. M., and Keennon, M.: Microbat: a
palm-sized electrically powered ornithopter, in: Proceedings of the Nasa/jpl
Workshop on Biomorphic Robotics, 2001.
Ramasamy, M., Leishman, J. G., and Lee, T. E.: Flowfield of a rotating-wing
micro air vehicle, J. Aircraft, 44, 1236–1244, https://doi.org/10.2514/1.26415, 2007.
Rayner, J. M. V.: A new approach to animal flight mechanics, J. Exp. Biol., 80, 17–54, 1979.
Ryan, M. and Su, H. J.: Classification of flapping wing mechanisms for micro
air vehicles, in: ASME 2012 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, American
Society of Mechanical Engineers, 12–15 August 2012, Chicago, Illinois, USA, 105–115, https://doi.org/10.1115/DETC2012-70953, 2012.
Shyy, W., Lian, Y., and Tang, J.: Aerodynamic of Low Reynolds Number flyers,
Cambridge University Press, UK, 2008.
Shyy, W., Aono, H., and Chimakurthi, S. K.: Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci., 46, 284–327, https://doi.org/10.1016/j.paerosci.2010.01.001, 2010.
Syaifuddin, M., Park, H. C., and Goo, N. S.: Design and evaluation of a
LIPCA-actuated flapping device, Smart Mater. Struct., 15, 1225,
https://doi.org/10.1088/0964-1726/15/5/009, 2006.
Tian, F. B., Luo, H., and Song, J.: Force production and asymmetric deformation of a flexible flapping wing in forward flight, J. Fluid. Struct., 36, 149–161, https://doi.org/10.1016/j.jfluidstructs.2012.07.006, 2013.
Wang, Z. J.: The role of drag in insect hovering, J. Exp. Biol., 207, 4147–4155, https://doi.org/10.1242/jeb.01239, 2004.
Wei, S., Berg, M., and Ljungqvist, D.: Flapping and flexible wings for biological and micro air vehicles, Prog. Aerosp. Sci., 35, 455–505, https://doi.org/10.1016/S0376-0421(98)00016-5, 1999.
Wootton, R. J.: Functional Morphology of Insect Wings, Annu. Rev. Entomol., 37, 113–140, https://doi.org/10.1146/annurev.en.37.010192.000553, 1992.
Young, J., Walker, S. M., and Bomphrey, R. J.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science, 325, 1549–1552, https://doi.org/10.1126/science.1175928, 2009.
Short summary
An innovative flapping wing micro aerial vehicle (FWMAV), forming a figure eight wingtip trajectory, which can achieve complex composite motions of flapping, twisting, and swinging is presented in this paper. Along with the design concept of reducing any possible weight and size, the aircraft was designed with classical and reliable mechanical components. Then, experiments were conducted to test the FWMAV aerodynamic efficiency with a complex figure eight wingtip trajectory.
An innovative flapping wing micro aerial vehicle (FWMAV), forming a figure eight wingtip...