Articles | Volume 12, issue 1
https://doi.org/10.5194/ms-12-41-2021
https://doi.org/10.5194/ms-12-41-2021
Research article
 | 
01 Feb 2021
Research article |  | 01 Feb 2021

Normal contact stiffness model considering 3D surface topography and actual contact status

Linbo Zhu, Jian Chen, Zaoxiao Zhang, and Jun Hong

Related authors

Research on the influence of air-gap eccentricity on the temperature field of a motorized spindle
Xiaohu Li, Jinyu Liu, Cui Li, Jun Hong, and Dongfeng Wang
Mech. Sci., 12, 109–122, https://doi.org/10.5194/ms-12-109-2021,https://doi.org/10.5194/ms-12-109-2021, 2021
Short summary

Related subject area

Subject: Machining and Manufacturing Processes | Techniques and Approaches: Mathematical Modeling and Analysis
Roundness error evaluation in image domain based on an improved bee colony algorithm
Benchi Jiang, Xin Du, Shilei Bian, and Lulu Wu
Mech. Sci., 13, 577–584, https://doi.org/10.5194/ms-13-577-2022,https://doi.org/10.5194/ms-13-577-2022, 2022
Short summary
Analytical model establishment and attitude calculation of a parallel leaf-spring carrying mechanism
Peng Li, Zheng-Rong Tong, and Wei-Hua Zhang
Mech. Sci., 13, 311–320, https://doi.org/10.5194/ms-13-311-2022,https://doi.org/10.5194/ms-13-311-2022, 2022
Short summary
Modular configuration design of a special machine tool for variable hyperbolic circular-arc-tooth-trace cylindrical gears
Haiyan Zhang, Li Hou, Shuang Liang, Yang Wu, and Zhongmin Chen
Mech. Sci., 13, 55–65, https://doi.org/10.5194/ms-13-55-2022,https://doi.org/10.5194/ms-13-55-2022, 2022
Short summary
Structural synthesis of plane kinematic chain inversions without detecting isomorphism
Jinxi Chen, Jiejin Ding, Weiwei Hong, and Rongjiang Cui
Mech. Sci., 12, 1061–1071, https://doi.org/10.5194/ms-12-1061-2021,https://doi.org/10.5194/ms-12-1061-2021, 2021
Short summary
Prediction of springback in local bending of hull plates using an optimized backpropagation neural network
Binjiang Xu, Lei Li, Zhao Wang, Honggen Zhou, and Di Liu
Mech. Sci., 12, 777–789, https://doi.org/10.5194/ms-12-777-2021,https://doi.org/10.5194/ms-12-777-2021, 2021
Short summary

Cited articles

Abbott, E. J. and Firestone, F. A.: Specifying surface quality-a method based on accurate measurement and comparison, J. Mech. Eng., 55, 572–596, 1933. 
Chang, W., Etsion, I., and Bogy, D.: An elastic-plastic model for the contact of rough surfaces, J. Tribol, 109, 257–263, 1987. 
Ciavarella, M., Delfine, V., and Demelio, V.: A new 2D asperity model with interaction for studying the contact of multiscale rough random profiles, Wear, 261, 556–567, https://doi.org/10.1016/j.wear.2006.01.028, 2006. 
Ciulli, E., Ferreira, L. A., Pugliese, G., and Tavares, S. M. O.: Rough contacts between actual engineering surfaces: Part I. Simple models for roughness description, Wear, 264, 1105–1115, https://doi.org/10.1016/j.wear.2007.08.024, 2008. 
Ghaednia, H., Wang, X., Saha, S., Xu, Y., Sharma, A., and Jackson, R. L.: A Review of Elastic–Plastic Contact Mechanics, Appl. Mech. Rev., 69, 060804, https://doi.org/10.1115/1.4038187, 2017. 
Download
Short summary
The paper proposed a normal contact stiffness model considering 3D topography and elastic–plastic contact of rough surfaces. The proposed model is validated using experimental tests conducted on two types of specimens and is compared with published theoretical models. The proposed model can provide a tool for efficient calculation of the contact force, deformation, and contact stiffness in engineering surfaces.