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Abstract. A normal contact stiffness model considering 3D topography and elastic–plastic contact of rough
surfaces is presented in this paper. The asperities are generated from the measured surfaces using the watershed
segmentation and a modified nine-point rectangle. The topography parameters, including the asperity locations,
heights, and radii of the summit, are obtained. Asperity shoulder–shoulder contact is considered. The relationship
of the contact parameters, such as the contact force, the deformation, and the mean separation of two surfaces,
is modelled in the three different contact regimes, namely elastic, elastic–plastic and fully plastic. The asperity
contact state is determined, and if the contact occurs, the stiffness of the single asperity pair is calculated and
summed as the total normal stiffness of two contact surfaces. The developed model is validated using experi-
mental tests conducted on two types of specimens and is compared with published theoretical models.

1 Introduction

Contact behaviour of mechanical joint surfaces has a great
influence on a mechanical system’s static–dynamic prop-
erty and thermal–electrical conductivity. In order to explore
the complex contact mechanisms of joint surfaces, many re-
searchers have addressed the on-surface contact theory for a
long period of time, and numerous asperity contact models
have been proposed since the 1970s. The pioneering work of
Greenwood and Williamson (1966) assumed that mechani-
cal joint surfaces were represented by a population of hemi-
spherically tipped asperities which had an identical radius of
curvature. Also, they assumed that these asperities followed a
Gaussian distribution, and that the contact of two mechanical
joint surfaces was constituted by micro-contacts between as-
perities. Equations relating to the surface separation and the
contact load were derived based on their assumption. After
Greenwood and Williamson (1966), many other researchers
continued to study asperity contact mechanisms (Sepehri and

Farhang, 2008; Ciulli et al., 2008; Kim et al., 2006; Zhao
and Chang, 2001; Chang et al., 1987; Whitehouse and Ar-
chard, 1970; Sun et al., 2020) and extended the asperity con-
tact model into others, as follows: from an elastic contact
situation into an elastic–plastic contact situation (Zhao et al.,
2000; Chang et al., 1987; Wang et al., 2017; Ghaednia et
al., 2017), from hemispherically tipped asperity into non-
hemispherically tipped asperity (Ciulli et al., 2008; Jamari
and Schipper, 2006), and from a Gaussian height distribution
into non-Gaussian distributions (Tomota et al., 2019; Panda
et al., 2015).

Most models mentioned above only concerned the rela-
tionships between normal contact load and normal inter-
ference of asperity summits. These models cannot explain
some problems such as contact stiffness, contact damping,
etc. (Greenwood and Wu, 2001). Meanwhile, in the real
world it is rare for asperities to contact each other exactly
from peak to peak. Most contact points exist on the shoul-
ders of asperities. Sepehri and Farhang (2009, 2008) studied
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2D oblique elastic shoulder–shoulder contact problems and
used it in their other models, solving problems ranging from
elastic–plastic interference of surfaces (Zhao et al., 2017; Shi
et al., 2016), and tried to solve 3D contact problems using
their 2D oblique contact model (Sepehri and Farhang, 2008;
Ciavarella et al., 2006).

Based on the literature review, it can be stated that there
are still some issues for the existing model in predicting the
contact behaviour of the joint surfaces. On the one hand,
the contact between two rough surfaces was treated as sim-
ilar to that between a flat surface and a rough surface in the
above models, while the shoulder–shoulder contact of asper-
ities is more approximate to the reality in practice. On the
other hand, the Gaussian distribution of asperity heights and
the radii of summits are employed in the formulation of the
contact; however, it cannot deal with that situation under the
non-Gaussian distribution, and it cannot involve the real ge-
ometry characteristics and locations of the asperities.

This paper presents a normal contact stiffness model con-
sidering 3D topography and elastic–plastic contact of rough
surfaces. The surface topography is generated from the mea-
sured data using the watershed segmentation and a modified
nine-point rectangle. The topography parameters, including
the asperity locations, heights, and radii of the summit, are
obtained. Formula governing the shoulder–shoulder contact
of asperities are derived to describe the contact behaviour in
the three different contact regimes, namely elastic, elastic–
plastic, and fully plastic. Based on this, an iterative compu-
tational strategy is then proposed to calculate the total nor-
mal contact stiffness at the contact surface. The developed
model is validated using experimental tests conducted on two
types of specimens and is compared with published theoreti-
cal models.

2 Contact model of a single asperity pair

2.1 Geometrical model

The contact of two nominally flat rough surfaces mainly oc-
curs between asperities on the mating surfaces, which are
shown in Fig. 1. An asperity on surface S1 interacts with an-
other asperity on surface S2; the contact point of the two as-
perities must be found in the midpoint of the contact region.
r1 and r2 are the offset of the midpoint of intersecting area
from the rough asperities, respectively. The curvature radius
of the contact point near the rough asperity that is allowed to
change according to a parabolic asperity shape can be given
by the following:

βi(r)= βi

(
1+

r2

β2
s

)3/2

, i = 1,2, (1)

where βs is the sum of the curvature radius of the two con-
tact asperities, and βi is the equivalent curvature radius of ith
contact asperity. The equivalent curvature radius of the con-
tact asperity, with the relative distance r at the contact point,

Figure 1. Schematic of asperity shoulder–shoulder contact.

Figure 2. Overlap region showing normal and oblique interfer-
ences.

can be expressed as follows:

β (r)=
β1 (r)β2 (r)
β1 (r)+β2 (r)

= β

(
1+

r2

β2
s

)3/2

. (2)

2.2 Elastic–plastic contact of asperity

For oblique contact problems, asperities interfere along an
oblique line, as shown in an enlarged view of the interfer-
ence in Fig. 2. fa is the contact force, and fn and ft are its
normal and tangential components, respectively. According
to the geometrical relationship, the normal force can be given
by the following:

fn = fa

(
1+

r2

β2
s

)−1
2

. (3)

The asperities on the rough surface experience the purely
elastic, elastic–plastic, and fully plastic deformations with
the gradual loading from zero to a high value, respectively.
When the normal load is small, the purely elastic behaviour
of the asperities is described, based on Hertz contact theory
(Johnson, 1995), as follows:

fa =
4
3
Eβ(r)0.5δ1.5

(
1+

r2

β2
s

)0.75

, δ ≤ δec, (4)

where 1/E = (1−υ2
1 )/E1+ (1−υ2

2 )/E2, E1 and E2 are the
elastic modulus, and υ1 and υ2 are the Poisson’s ratios of the
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contacting surfaces. δec is a critical interference when initial
plastic yield occurs, and it is given by Chang et al. (1987) as
follows:

δec (r)=
(
πkH

2E

)
β (r) , (5)

where k is the mean contact pressure factor. H is Brinell
hardness of the softer material.

When the normal load is large enough, the fully plastic
deformation occurs between rough asperities, and the con-
tact load can be described based on the fully plastic contact
theory (Abbott and Firestone, 1933) by the following:

fa = 2πβ (r)Hδ
(

1+
r2

β2
s

)1.5

, 110δec < δ. (6)

The normal contact load of mating asperities in the transition
stage from purely elastic to full plastic deformations, namely
the elastic–plastic deformation stage, can be expressed as fol-
lows (Lin and Lin, 2005; Kogut and Etsion, 2003):

fa =


1.03fec (r)

(
δ

δec(r)

)1.425(
1+ r2

β2
s

)0.8625
,

δec < δ ≤ 6δec

1.40fec (r)
(

δ
δec(r)

)1.263(
1+ r2

β2
s

)1.1055
,

6δec < δ ≤ 110δec

(7)

where fec is a critical force when initial plastic yield occurs,
and it can be written as follows:

fec (r)=
4
3
Eβ(r)

1
2 δec(r)

3
2 . (8)

3 Normal stiffness model of rough surfaces

3.1 Topography analysis and asperity division

The 3D surface topography could be obtained by a measure-
ment instrument, such as a white light interferometer. The
watershed segmentation method is used to analyse the sur-
face topography (Mezghani and Zahouani, 2004). The 3D
rough asperities on surface topography are considered as
being a catchment basin surrounded by watershed lines. A
new global algorithm for identifying the 3D rough asperity is
given as follows:

1. Greyscale image. The 3D surface topography is rep-
resented as a 2D greyscale image (shown in Fig. 3a).
The topography height is proportional to the greyscale
value of the image; that is, the minimum height corre-
sponds to the minimum greyscale value of zero (black),
while the maximum height corresponds to the maxi-
mum greyscale value of one (white).

2. Complementary operation. Local maxima and local
minima in the surface topography are interchanged, as

shown in Fig. 3b. The aim is the local maxima of the sur-
face topography height, but the local minima are found
by the watershed segmentation.

3. Topography enhancement. The purpose of this step is to
increase the difference between the minimum and max-
imum values in the greyscale images (shown in Fig. 3c).

4. Watershed segmentation. The watershed segmentation
algorithm is used to divide the greyscale image into sev-
eral independent regions, as shown in Fig. 3d. And then,
the divided image is mapped back to 3D surface topog-
raphy, as shown in Fig. 3e.

5. Rough asperity identification. A conventional nine-
point peak criterion was defined as a point that is higher
than its eight closest neighbouring points, as shown in
Fig. 4. However, with such an asperity peak definition,
the shape of the asperity peak is not necessarily regular.
Points further away from the centre point can be higher
than their neighbouring points and thus distort the shape
of an asperity peak. In order to have a more round shape
for the asperity peak, the four corner points of the asper-
ity peak must be lower than the two neighbouring points
(for each corner point). Therefore, a modified nine-point
peak criterion of rough asperity is adopted in this paper.
It can be mathematically defined as follows:

zi,j > zi−1,j−1,zi−1,j+1,zi+1,j−1,zi+1,j+1

zi−1,j−1 < zi,j−1,zi−1,j

zi−1,j+1 < zi,j+1,zi−1,j

zi+1,j−1 < zi,j−1,zi+1,j

zi+1,j+1 < zi,j+1,zi+1,j

(9)

If there is no rough asperity in the divided region, the
region will be merged into the surrounding adjacent re-
gion according to the similar region-merging algorithm.
It guarantees that each independent region contains a
rough asperity.

3.2 Topography analysis and asperity division

After 3D topography analysis and rough asperity division,
the summit radius of rough asperity in the kth divided region
is calculated as follows:

βk =
1√

κk,xκk,y − κ
2
k,xy

, (10)

where κk,x and κk,y are the curvatures in the x and y direction
and are evaluated from the heights on the initial nine-point
rectangular grid shown in Fig. 4.{
κk,x =

zi−1,j−2zi,j+zi+1,j
1x2

κk,y =
zi,j−1−2zi,j+zi,j+1

1y2 ,
(11)
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Figure 3. Rough division. (a) Greyscale image. (b) Complementary operation. (c) Topography enhancement. (d, e) Watershed segmentation.

Figure 4. Modified nine-point rectangular definition of rough as-
perity in the independent regions.

and κk,y is the composite curvature and could be evaluated
by the mixed second-order partial derivative.

κk,xy =

(
zi+1,j+1+ zi−1,j−1

)
−
(
zi−1,j+1+ zi+1,j−1

)
41x ·1y

. (12)

Then, the coordinates of all asperities on the surface topog-
raphy could be expressed mathematically with the following
matrix S as follows:

S=


x1 y1 z1 β1 W11 W12 · · ·

x2 y2 z2 β2 W21 W22 · · ·

...
...

...
...

...
...

...

xn yn zn βn Wn1 Wn2 · · ·

 , (13)

where xi , yi , and zi are the coordinates of rough asperities
in ith independent region of the surface topography, and βi
is the summit radius of rough asperity in the corresponding
region. Wij is the boundary point of the ith rough asperity. n
is the total number of the rough asperity.

3.3 Stiffness prediction approach

The total normal load of each couple of test areas was calcu-
lated as follows:

Fn (d)=
N∑
i=1

fni , (14)

where fni is the normal force of ith contact pair at surface
separation d. N is the total number for the contact pair of

the rough asperity in the nominal contact area A. Then, the
total normal contact stiffness in unit area could be written as
follows:

Kn = −
1
A

d(Fn(d))
d(d)

(15)

= −
1
A

N∑
i=1

(
−

d
(
fni
)

d(d)

)

=
1
A

num∑
i=1

kni ,

where the normal stiffness of a single contact pair could be
calculated as follows:

kni =−
d
(
fni
)

d(d)
=−

d
(
fni
)

d(δn)
×

d(δn)
d(d)

=
dfni
dδn
=

dfa

dδ
cos2θ. (16)

The detailed procedure for predicting the normal stiffness in
the unit area of the mating surfaces is illustrated in Fig. 5.

The surface topography was measured and analysed at
first, and its characteristic parameters were obtained and
stored with a matrix S, shown as Eq. (13). The separation
distance between the two contact surfaces is specified in ad-
vance. The calculation procedure starts from the first rough
asperity (i.e. the divided region on the topography) on the
mating surfaces, marking i = 1 and j = 1, respectively. The
contact status of the two rough asperities can be identified by
the following formula:

δ(rij )=



(
z1i + z2j − d −

r2
ij

2βs,ij

)(
1+

r2
ij

β2
s,ij

)− 1
2
> 0,

contact(
z1i + z2j − d −

r2
ij

2βs,ij

)(
1+

r2
ij

β2
s,ij

)− 1
2
≤ 0,

no contact

(17)

where the misalignment rij of two rough asperities can be
calculated as follows:

rij =

√(
x1i − x2j

)2
+
(
y1i − y2j

)2
, (18)
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Figure 5. Flow chart for calculating the contact stiffness between
two rough surfaces.

where βs is the sum of the radius curvature of the following
two mating asperities:

βs,ij = β1i +β2j . (19)

The numbers of the rough asperity on the mating surfaces (S1
and S2) are denoted by M and N , respectively. Therefore,
this algorithm was iterated M and N times until all rough
asperities could be traversed. Then, the normal stiffness of
the mating rough surface can be predicated. All of the above
processes were carried out with MATLAB (version 2016b).

4 Experimental investigation

In this section, the two types of cylindrical specimens were
chosen to demonstrate the experimental measurement of nor-
mal contact stiffness. They were machined by turning and
milling, respectively, and were prepared with the sizes of
820mm×40mm. The specimens are made of 2A12 material
(aluminium alloy) with Young’s modulus E and a Poisson’s

ratio υ, which are 70 GPa and 0.32, respectively. The average
roughness Ra of the contact surfaces is 1.6 µm.

4.1 Surface topography measurement and analysis

The contact surfaces were measured by a confocal mi-
croscope (LEXT OLS4000; Olympus, Japan), as shown in
Fig. 6. The magnification of this microscope ranges from 108
to 17 280 times. It is capable of resolving features 10 nm in
size in the z direction (sample height) and 120 nm in the x–
y plane. The test area size of each specimen is 1280µm×
1280µm. Typical topographies of the two types of specimens
are illustrated in Figs. 7 and 8, respectively.

Surface topography were analysed using the method pre-
sented in Sect. 3.1. Firstly, the noise signal of the raw data
was removed by wavelet analysis to obtain the real topogra-
phy data of the rough surface. And then, the rough surface
was divided into several subregions, based on the watershed
method, each of which contains a rough peak. Finally, the
rough peaks in each subregion were fitted with a rotating
paraboloid, using the nine-point rectangle, and the size and
spatial position of each fitted asperity were recorded.

The general statistic distributions of asperity heights and
asperity radii of summits in one typical upper contact surface
are illustrated in Figs. 9 and 10, respectively. It can be found
that the distributions of asperity heights are fitted well with
the Gaussian function, while the distributions of the asperity
radii of summits are not very good. It means that the asperity
radii of the summits’ distribution does not strictly satisfy the
Gaussian distribution.

Table 1 shows the statistical parameters of the measured
contact surfaces, such as asperity radii of summits βi , stan-
dard deviation of asperity height σi , and asperity density ηi .
i = 1,2 and is the upper surface and lower surface, respec-
tively.

4.2 Normal contact stiffness measurement

The experimental validation was conducted on two short
cylindrical specimens that compressed together in dry con-
tact by the loading mechanism, as shown in Fig. 11. The
experimental set-up is mainly composed of the following
parts: a hydraulic jack, a force sensor, an extensometer, spec-
imens, an adjustment mechanism, and a measurement frame.
The hydraulic jack (CRSM-50; Juding Inc., China) provides
the normal pressure for the contact surface of two speci-
mens, and the value of contact loads can be obtained by the
force sensor (K-450; Lorenz Messtechnik GmbH, Germany).
The extensometer (3442; Epsilon Technology Corp., USA) is
used to test the deformation of the two specimens during the
loading process. It must be pointed that the measured value
is not the contact surface deformation because it includes
the solid deformation of the specimens within the original
length. The adjustment mechanism consists of an adjusting
screw, locking screw, self-aligning ball, etc. The specimens
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Figure 6. Experimental equipment for topography measurement.

Figure 7. Typical 3D topographies of turning specimens. (a) Measured surface. (b) Watershed and fitted.

Figure 8. Typical 3D topographies of milling specimens. (a) Measured surface. (b) Watershed and fitted.
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Figure 9. Statistical distribution of asperity heights of the measuring surface. (a) Turning specimen and (b) milling specimen.

Figure 10. Statistical distribution of asperity radii of summits of the measuring surface. (a) Turning specimen and (b) milling specimen.

can be easily installed and removed by the adjusting screw
and locking screw, respectively. The self-aligning ball is in-
stalled at the ball socket at the top of the upper specimen,
meaning that the two surfaces are in full contact.

Based on the experimental set-up, the normal contact stiff-
ness of the two specimens Kn can be obtained using an indi-
rect method as follows:

Kn =
dF
dδn

, (20)

where δn is the normal relative deformation between the con-
tact surfaces, as shown in Fig. 12, and can be derived indi-
rectly by the following formula:

δn = δ− δ1− δ2, (21)

where δ is the total deformation obtained by the extensome-
ter. δi is the deformation of the contact specimen within the
original length Li , and can be calculated by the following
formula:

δi =
FLi

EiA
, i = 1,2, (22)

where two specimens are differentiated by i.A is the nominal
contact area. F is the normal force measured by the force
sensor. Ei is the elastic modulus of the two specimens.

5 Results and discussion

The experimental data between the normal force and de-
formation and the curves fitted using a power function are
shown in Fig. 13 for two types of specimens. The fitting func-
tion is given by the following:

Fn = 0.5636δ4.6870
n for the turning specimen, (23)

Fn = 0.0006δ8.7230
n for the milling specimen. (24)

The normal contact stiffness was calculated with an indirect
method of derivation with respect to deformation, and the
fitting function can be expressed as follows:

Kn = 4.1473F 0.7866
n for the turning specimen, (25)

Kn = 6.9133F 0.5005
n for the milling specimen. (26)

From the literature, there are currently three methods for cal-
culating the normal contact stiffness of the contact surfaces,
i.e. the CBE model, the KE model, and α-CBE model. In
the CBE model and the KE model, the contact between two
rough surfaces was simplified as being that between an ideal
smooth surface and a nominally flat rough surface, while the
contact between the two rough surfaces was considered for

https://doi.org/10.5194/ms-12-41-2021 Mech. Sci., 12, 41–50, 2021
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Table 1. Statistical parameters of the measured contact surfaces.

Specimens Upper surface S1 Lower surface S2

β1 σ1 η1 β2 σ2 η2
(µm) (µm) (mm−2) (µm) (µm) (mm−2)

Turning 72.54 0.3713 1498 75.31 0.3721 1499

Milling 79.02 0.3864 1426 83.14 0.3532 1458

Figure 11. Experiment set-up of normal contact stiffness. (a) Schematic diagram and (b) real experiment set-up.

Figure 12. Schematic diagram of deformation between experimen-
tal specimens.

the α-CBE model. These three models calculated the normal
stiffness by simple integration, based on the assumed Gaus-
sian distribution function and the statistics parameters in Ta-
ble 1.

The results from the proposed model in this paper were
compared to those obtained from the three models and ex-
perimental tests, as shown in Fig. 14. It can be seen that the
normal contact stiffness calculated by the proposed model is
in good agreement with the experimental results, compared
with other models. The difference in the normal contact stiff-
ness predicted by the CBE model and KE model becomes
larger as the pressure increases. This is due to more loads
causing more asperities to make the plastic deformation. In
the plastic state, the KE model has a higher plastic contact
stiffness than the CBE model. When the normal force is
small, the normal contact stiffness calculated by CBE model
and α-CBE model is very close, while the difference be-
comes larger with the increase in the normal force. It means
that the contact between two rough surfaces when calculating
the normal contact stiffness cannot be treated as being that
between a flat and a rough surface. The shoulder–shoulder of
asperities has a greater impact on the contact stiffness.

Meanwhile, it can be observed the normal contact stiffness
gradually increases with the increase in normal force. That is
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Figure 13. Experimental results and fitting curves of the relationship between normal force and deformation. (a) Turning specimens and
(b) milling specimens.

Figure 14. Comparison of normal contact stiffness predicted by a theoretical model and experimental results. (a) Turning specimens and
(b) milling specimens.

because the increase in the normal contact force increases
the number of asperities and the actual contact area, which
makes the contact surface more resistant to the deformation.
Based on Eqs. (25) and (26), it can be noted that the indexes
of the fitting functions are all less than one. It means that the
increase rate of the normal contact stiffness with the normal
force is gradually decreased. In general, very good agreement
between the present model and the experimental results is
found compared to the prediction of the other contact models.
It can be said that the proposed model in this paper can be
used to accurately predict the normal contact stiffness of the
rough surfaces when considering the 3D topography surface
and actual contact state. Furthermore, it can be noted that, for
the joints made of 2A12 material with turning and milling,
technicians can directly use Eqs. (25) and (26), respectively,
to calculate the normal contact stiffness of joint surfaces. For
other situations, the proposed model can be used to obtain the
normal contact stiffness according to the material properties,
surface roughness, normal load etc., as shown in Fig. 5.

6 Conclusions

A normal contact stiffness model of rough surfaces has
been presented. In this model, shoulder–shoulder contact be-
tween asperity pairs is considered, and three different contact
regimes, namely elastic, elastic–plastic, and fully plastic, are
modelled. An iterative computational strategy is developed
to calculate the total normal stiffness at the contact surface.
The proposed model is validated using experimental tests
conducted on two types of specimens, and it was compared
with published theoretical models. The results show that the
normal contact stiffness calculated by the proposed model is
in good agreement with the experimental results when com-
pared to the prediction of other models. Meanwhile, it could
be found that the normal contact stiffness significantly in-
creases with the increase in normal force, and the increase
rate is gradually decreased. The proposed model in the paper
can provide a tool for the efficient calculation of the contact
force, the deformation, and the contact stiffness in engineer-
ing surfaces.
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