Articles | Volume 9, issue 1
https://doi.org/10.5194/ms-9-177-2018
https://doi.org/10.5194/ms-9-177-2018
Research article
 | 
23 Apr 2018
Research article |  | 23 Apr 2018

A Modified Prandtl-Ishlinskii Hysteresis Modeling Method with Load-dependent Delay for Characterizing Magnetostrictive Actuated Systems

Ying Feng, Zhi Li, Subhash Rakheja, and Hui Jiang

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Numerical Modeling and Analysis
Design and experiment of magnetic navigation control system based on fuzzy PID strategy
Guosheng Geng, Feng Jiang, Chao Chai, Jianming Wu, Yejun Zhu, Guiguan Zhou, and Maohua Xiao
Mech. Sci., 13, 921–931, https://doi.org/10.5194/ms-13-921-2022,https://doi.org/10.5194/ms-13-921-2022, 2022
Short summary
Adaptive sliding-mode control for improved vibration mitigation in civil engineering structures
Khaled Zizouni, Abdelkrim Saidi, Leyla Fali, Ismail Khalil Bousserhane, and Mohamed Djermane
Mech. Sci., 13, 899–908, https://doi.org/10.5194/ms-13-899-2022,https://doi.org/10.5194/ms-13-899-2022, 2022
Short summary
Autonomous vehicle trajectory tracking lateral control based on the terminal sliding mode control with radial basis function neural network and fuzzy logic algorithm
Binyu Wang, Yulong Lei, Yao Fu, and Xiaohu Geng
Mech. Sci., 13, 713–724, https://doi.org/10.5194/ms-13-713-2022,https://doi.org/10.5194/ms-13-713-2022, 2022
Short summary
Dynamic modeling of a metro vehicle considering the motor–gearbox transmission system under traction conditions
Tao Zhang, Taimu Jin, Ziwei Zhou, Zaigang Chen, and Kaiyun Wang
Mech. Sci., 13, 603–617, https://doi.org/10.5194/ms-13-603-2022,https://doi.org/10.5194/ms-13-603-2022, 2022
Short summary
Dynamic characterization of controlled multi-channel semi-active magnetorheological fluid mount
Zhihong Lin and Mingzhong Wu
Mech. Sci., 12, 751–764, https://doi.org/10.5194/ms-12-751-2021,https://doi.org/10.5194/ms-12-751-2021, 2021
Short summary

Cited articles

Braghin, F., Cinquemani, S., and Resta, F.: A model of magnetostrictive actuators for active vibration control, Sensor Actuat. A-Phys., 165, 342–350, 2011. 
Brokate, M. and Sprekels, J.: Hysteresis and phase transitions, Applied mathematical sciences, Vol. 121, Springer, New York, 1996. 
Cao, S. Y., Wang, B. W., Zheng, J. J., Huang, W. M., Sun, Y., and Yang, Q. X.: Modeling dynamic hysteresis for giant magnetostrictive actuator using hybrid genetic algorithm, IEEE T. Magn., 42, 911–914, 2006. 
Chen, W. M. and Liu, T. S.: Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators, Mechatronics, 23, 1163–1170, 2013. 
Chen, X. and Hisayanna, T.: Adaptive sliding-mode position control for piezo-actuated stage, IEEE T. Ind. Electron., 55, 3927–3934, 2008.