Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-1011-2022
https://doi.org/10.5194/ms-13-1011-2022
Research article
 | 
16 Dec 2022
Research article |  | 16 Dec 2022

Tooth profile design of a novel helical gear mechanism with improved geometry for a parallel shaft transmission

Enyi He and Shihao Yin

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Study on the contact performance of the variable hyperbolic circular arc tooth trace cylindrical gear with installation errors
Dengqiu Ma, Bing Jiang, Lingli Bao, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 353–366, https://doi.org/10.5194/ms-15-353-2024,https://doi.org/10.5194/ms-15-353-2024, 2024
Short summary
Multi-robot consensus formation based on virtual spring obstacle avoidance
Yushuai Fan, Xun Li, Xin Liu, Shuo Cheng, and Xiaohua Wang
Mech. Sci., 15, 195–207, https://doi.org/10.5194/ms-15-195-2024,https://doi.org/10.5194/ms-15-195-2024, 2024
Short summary
A miniaturized statically balanced compliant mechanism for on-chip ultralow wide-bandwidth vibrational energy harvesting
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024,https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Vibration coupling characteristics and grinding force control of an elastic component grinding system
Yufei Liu, Lang Wu, En Lu, and Jinyong Ju
Mech. Sci., 15, 123–136, https://doi.org/10.5194/ms-15-123-2024,https://doi.org/10.5194/ms-15-123-2024, 2024
Short summary
Influence of a walking mechanism on the hydrodynamic performance of a high-speed wheeled amphibious vehicle
Haijun Xu, Liyang Xu, Yikun Feng, Xiaojun Xu, Yue Jiang, and Xue Gao
Mech. Sci., 14, 277–292, https://doi.org/10.5194/ms-14-277-2023,https://doi.org/10.5194/ms-14-277-2023, 2023
Short summary

Cited articles

Beam, A. S.: Beveloid gearing, Machine Design, 26, 220–238, 1954. 
Brewe, D. E. and Hamrock, B. J.: Simplified solution for elliptical-contact deformation between two elastic solids, ASME J. Tribol., 99, 485–487, https://doi.org/10.1115/1.3453245, 1997. 
Chen, X. J., Zhang, X. P., Cai, X., Houjun, C., Xiaoping, Z., Xiong, C., Zhilan, J., Chang, Q., and Donghe, S.: Computerized design, generation and simulation of meshing and contact of hyperboloidal-type normal circular-arc gears, Mech. Mach. Theory, 96, 127–145, https://doi.org/10.1016/j.mechmachtheory.2015.08.022, 2016. 
Chen, Y.-Z.: Line Gear: Science Press of China, China, ISBN 9787030407887, 31–69 pp., 2014. 
Chen, Y.-Z., Xing, G. Q., and Peng, X. F.: The space curve mesh equation and its kinematics experiment, in: 12th IFToMM World Congress, Besançon, France, 18–21 June 2007, 10–12 pp., 2007. 
Download
Short summary
A novel helical gear mechanism with improved geometry is proposed to reduce transmission errors. For the novel spiral gear mechanism with improved geometry, the maximal contact stresses change more smoothly and have a stronger bearing capacity. The results show that, under the same conditions, the gear in this paper improves the transmission accuracy, and the bearing capacity is also stronger.