Articles | Volume 11, issue 2
https://doi.org/10.5194/ms-11-447-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Horizontal axis wind turbine modelling and data analysis by multilinear regression
Related subject area
Subject: Dynamics and Control | Techniques and Approaches: Numerical Modeling and Analysis
Position control of a soft pneumatic actuator based on the pressure parameter feedback model (PPFM)
Structural design and jumping motion planning of the jumping leg inspired by a goat's hindlimb
Design and experiment of magnetic navigation control system based on fuzzy PID strategy
Adaptive sliding-mode control for improved vibration mitigation in civil engineering structures
Mech. Sci., 15, 407–416,
2024Mech. Sci., 14, 493–502,
2023Mech. Sci., 13, 921–931,
2022Mech. Sci., 13, 899–908,
2022Cited articles
Abrar, M. A., Mahbub, A. M. I., and Mamun, M.: Design Optimization of a Horizontal Axis Micro Wind Turbine through Development of CFD Model and Experimentation, PProcedia Engineer., 90, 333–338, https://doi.org/10.1016/j.proeng.2014.11.858, 2014.
Ahmad, F.: Renewable Energy, Horizontal-Axis Wind Turbine (HAWT) Working Principle, Single Blade, Two Blade, Three-Blade Wind Turbine: https://electricalacademia.com/renewable-energy/, last access: 25 February 2019.
Ashrafi, Z.N., Ghaderi, M., and Sedaghat, A.: Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control, Energ. Convers. Manage., 93, 349–356, https://doi.org/10.1016/j.enconman.2015.01.048, 2015.
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Wind Energy Handbook, John Wiley & Sons Ltd., London, 511–558, https://doi.org/10.1002/0470846062.ch9, 2001.
Castellani, F., Vignaroli, A., and Gravdahl, A. R.: Wind simulation on complex terrain: about the dependencies on inlet flow orthogonality, in: European wind energy conference and exhibition proceedings – Athens, Greece, 2006.