Articles | Volume 14, issue 2
https://doi.org/10.5194/ms-14-277-2023
https://doi.org/10.5194/ms-14-277-2023
Research article
 | 
18 Jul 2023
Research article |  | 18 Jul 2023

Influence of a walking mechanism on the hydrodynamic performance of a high-speed wheeled amphibious vehicle

Haijun Xu, Liyang Xu, Yikun Feng, Xiaojun Xu, Yue Jiang, and Xue Gao

Related subject area

Subject: Mechanisms and Robotics | Techniques and Approaches: Numerical Modeling and Analysis
Study on the contact performance of the variable hyperbolic circular arc tooth trace cylindrical gear with installation errors
Dengqiu Ma, Bing Jiang, Lingli Bao, Zhenhuan Ye, and Yongping Liu
Mech. Sci., 15, 353–366, https://doi.org/10.5194/ms-15-353-2024,https://doi.org/10.5194/ms-15-353-2024, 2024
Short summary
Multi-robot consensus formation based on virtual spring obstacle avoidance
Yushuai Fan, Xun Li, Xin Liu, Shuo Cheng, and Xiaohua Wang
Mech. Sci., 15, 195–207, https://doi.org/10.5194/ms-15-195-2024,https://doi.org/10.5194/ms-15-195-2024, 2024
Short summary
A miniaturized statically balanced compliant mechanism for on-chip ultralow wide-bandwidth vibrational energy harvesting
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024,https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Vibration coupling characteristics and grinding force control of an elastic component grinding system
Yufei Liu, Lang Wu, En Lu, and Jinyong Ju
Mech. Sci., 15, 123–136, https://doi.org/10.5194/ms-15-123-2024,https://doi.org/10.5194/ms-15-123-2024, 2024
Short summary
An investigation into the micro-geometric tapered-shape surface design of the piston bore of a piston–cylinder interface in an axial piston motor
Rui Liu, Yishan Zeng, Min Hu, Huabing Zhu, Changhai Liu, and Lei Wang
Mech. Sci., 14, 259–275, https://doi.org/10.5194/ms-14-259-2023,https://doi.org/10.5194/ms-14-259-2023, 2023
Short summary

Cited articles

Allaka, H. and Groper, M.: Validation and verification of a planing craft motion prediction model based on experiments conducted on full-size crafts operating in real sea, J. Mar. Sci. Technol., 25, 1199–1216, https://doi.org/10.1007/s00773-020-00709-6, 2020. 
Behara, S., Arnold, A., Martin, J. E., Harwood, C. M., and Carrica, P. M.: Experimental and computational study of operation of an amphibious craft in calm water, Ocean Eng., 209, 107460, https://doi.org/10.1016/j.oceaneng.2020.107460, 2020. 
Bi, X., Shen, H., Zhou, J., and Su, Y.: Numerical analysis of the influence of fixed hydrofoil installation position on seakeeping of the planing craft, Appl. Ocean Res., 90, 101863, https://doi.org/10.1016/j.apor.2019.101863, 2019. 
Demirel, Y. K., Khorasanchi, M., Turan, O., Incecik, A., and Schultz, M. P.: A CFD model for the frictional resistance prediction of antifouling coatings, Ocean Eng., 89, 21–31, https://doi.org/10.1016/j.oceaneng.2014.07.017, 2014. 
Feng, Y., Liu, B., Lu, S., Pan, D., and Xu, X.: Drag reduction design and research of high-speed amphibious vehicles deformable track wheels, Ships Offshore Struc., 1744–5302, https://doi.org/10.1080/17445302.2022.2093032, 2022.  
Download
Short summary
A high-speed wheeled amphibious vehicle was designed and researched based on computational fluid dynamic (CFD) technology. The results were compared with the corresponding test results for verification. CFD is applied to analyze the influence of the wheel flip angle on the resistance performance, and resistance reduction is explained by the change in wake flow-field of the amphibious vehicle. The wheel well was optimized based on our requirement for the vehicle performance on land and water.