Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-899-2022
https://doi.org/10.5194/ms-13-899-2022
Research article
 | 
28 Oct 2022
Research article |  | 28 Oct 2022

Adaptive sliding-mode control for improved vibration mitigation in civil engineering structures

Khaled Zizouni, Abdelkrim Saidi, Leyla Fali, Ismail Khalil Bousserhane, and Mohamed Djermane

Related subject area

Subject: Dynamics and Control | Techniques and Approaches: Numerical Modeling and Analysis
Position control of a soft pneumatic actuator based on the pressure parameter feedback model (PPFM)
Yuwang Liu, Dongyang Zhang, Yi Yu, Peng Chen, Wenping Shi, and Dongqi Wang
Mech. Sci., 15, 407–416, https://doi.org/10.5194/ms-15-407-2024,https://doi.org/10.5194/ms-15-407-2024, 2024
Short summary
Structural design and jumping motion planning of the jumping leg inspired by a goat's hindlimb
Gang Chen, Longxin He, Zhihan Zhao, Yuwang Lu, Jiajun Tu, Xiangying Ren, and Hanzhi Lv
Mech. Sci., 14, 493–502, https://doi.org/10.5194/ms-14-493-2023,https://doi.org/10.5194/ms-14-493-2023, 2023
Short summary
Design and experiment of magnetic navigation control system based on fuzzy PID strategy
Guosheng Geng, Feng Jiang, Chao Chai, Jianming Wu, Yejun Zhu, Guiguan Zhou, and Maohua Xiao
Mech. Sci., 13, 921–931, https://doi.org/10.5194/ms-13-921-2022,https://doi.org/10.5194/ms-13-921-2022, 2022
Short summary
Autonomous vehicle trajectory tracking lateral control based on the terminal sliding mode control with radial basis function neural network and fuzzy logic algorithm
Binyu Wang, Yulong Lei, Yao Fu, and Xiaohu Geng
Mech. Sci., 13, 713–724, https://doi.org/10.5194/ms-13-713-2022,https://doi.org/10.5194/ms-13-713-2022, 2022
Short summary
Dynamic modeling of a metro vehicle considering the motor–gearbox transmission system under traction conditions
Tao Zhang, Taimu Jin, Ziwei Zhou, Zaigang Chen, and Kaiyun Wang
Mech. Sci., 13, 603–617, https://doi.org/10.5194/ms-13-603-2022,https://doi.org/10.5194/ms-13-603-2022, 2022
Short summary

Cited articles

Alli, H. and Yakut, O.: Fuzzy sliding-mode control of structures, Eng. Struct., 27, 277–284, https://doi.org/10.1016/j.engstruct.2004.10.007, 2005. a
Ambraseys, N. N.: The El Asnam (Algeria) earthquake of 10 October 1980: conclusions drawn from a field study, Q. J. Eng. Geol. Hydroge., 14, 143–148, https://doi.org/10.1144/GSL.QJEG.1981.014.02.05, 1981. a
Ashtiani, M., Hashemabadi, S. H., and Ghaffari, A.: A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater., 374, 716–730, https://doi.org/10.1016/j.jmmm.2014.09.020, 2015. a
Bandyopadhyay, B., Janardhanan, S., and Spurgeon, S. K.: Advances in sliding mode control, Concept, Theory and Implementation, Lecture Notes in Control and Information Sciences, Springer-Verlag, https://doi.org/10.1007/978-3-642-36986-5, 2013. a
Bingham, E. C.: An investigation of the laws of plastic flow, Bul. Bur. Stan., 13, 309–352, 1917. a
Download
Short summary
The paper provides a numerical study of a semi-active control strategy for structural vibrations caused by earthquake or wind excitations. A sliding-mode non-linear controller was designed and reinforced by an adaptive switching gain to overcome the chattering problem and perform the stability proven by the Lyapunov stability criterion. The compared and discussed numerical simulation results have shown the performance of the proposed semi-active control.