Articles | Volume 13, issue 2
https://doi.org/10.5194/ms-13-619-2022
https://doi.org/10.5194/ms-13-619-2022
Short communication
 | 
20 Jul 2022
Short communication |  | 20 Jul 2022

Short communication: Experiment study on micro-textured tool with internal cooling

Gang Yang and Wei Feng

Related subject area

Subject: Machining and Manufacturing Processes | Techniques and Approaches: Experiment and Best Practice
Study on cutting temperatures of SiCp ∕ Al composites for ultrasonic vibration-assisted cutting
Qingling Wu, Shuaijie Zhai, Yongsheng Du, Dong Yan, and Yakun Yang
Mech. Sci., 15, 293–304, https://doi.org/10.5194/ms-15-293-2024,https://doi.org/10.5194/ms-15-293-2024, 2024
Short summary
Surface quality improvement for 316L additive manufactured prototype based on magnetorheological polishing
Na She, Tao Gong, Bingsan Chen, Minrui Lu, Yongchao Xu, and Xiaodong Peng
Mech. Sci., 14, 179–191, https://doi.org/10.5194/ms-14-179-2023,https://doi.org/10.5194/ms-14-179-2023, 2023
Short summary
Short communication: Part contour error prediction based on LSTM neural network
Yun Zhang, Guangshun Liang, Cong Cao, Yun Zhang, and Yan Li
Mech. Sci., 14, 15–18, https://doi.org/10.5194/ms-14-15-2023,https://doi.org/10.5194/ms-14-15-2023, 2023
Short summary
Drilling performance analysis of impregnated micro bit
Dongdong Song, Zhangping Ren, Yingxin Yang, Yousheng Chen, Gao Nie, Leichuan Tan, Hao Peng, Zijie Li, Xiaojing Chen, Meng Li, Haitao Ren, and Long Zuo
Mech. Sci., 13, 867–875, https://doi.org/10.5194/ms-13-867-2022,https://doi.org/10.5194/ms-13-867-2022, 2022
Short summary
The three-point eccentric magnetorheological polishing technology for hard brittle alumina ceramics
Cheng Zheng, Bingsan Chen, Xiaoyu Yan, Yongchao Xu, and Shangchao Hung
Mech. Sci., 13, 473–483, https://doi.org/10.5194/ms-13-473-2022,https://doi.org/10.5194/ms-13-473-2022, 2022
Short summary

Cited articles

Deng, J., Wu, Z., Lian, Y., Qi, T., and Cheng, J.: Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes, Int. J. Refract. Met. H., 30, 164–172, https://doi.org/10.1016/j.ijrmhm.2011.08.002, 2012. 
Guo, Y. B. and Yen, D. W.: A FEM study on mechanisms of discontinuous chip formation in hard machining, J. Mater. Process. Tech., 155, 1350–1356, https://doi.org/10.1016/j.jmatprotec.2004.04.210, 2004. 
Koshy, P. and Tovey, J.: Performance of electrical discharge textured cutting tools, CIRP Ann.-Manuf. Techn., 60, 153–156, https://doi.org/10.1016/j.cirp.2011.03.104, 2011.  
Li, N., Chen, Y., Kong, D., and Tan, S.: Experimental investigation with respect to the performance of deep submillimeter-scaled textured tools in dry turning titanium alloy Ti-6Al-4V, Appl. Surf. Sci., 403, 187–199, https://doi.org/10.1016/j.apsusc.2017.01.166, 2017. 
Liu, J., Han, R., and Sun, Y.: Research on experiments and action mechanism with water vapor as coolant and lubricant in Green cutting, Int. J. Mach. Tool Manu., 45, 687–694, https://doi.org/10.1016/j.ijmachtools.2004.09.022, 2005. 
Download
Short summary
Under the condition of high temperature, high pressure and severe friction, the micro-texture hole or groove will be filled with chips quickly and lose its function. The texture with a larger aperture is made on the tool rake face, which is connected with the internal cooling hole so as to achieve the functions of cooling, lubricating, reducing friction, changing chip state, reducing cutting force, prolonging tool life and reducing production cost during rough machining.